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Even the most reserved among model theorists would no doubt agree that the
subject has grown dramatically over the last thirty years. This period has pro-
duced a substantial and beautiful abstract theory as well as a range of remarkable
applications that extend into several areas of mathematics and incorporate the
most sophisticated theoretical developments in the field. During the last decade
in particular, results obtained by model theorists have attracted the attention of
researchers outside logic and have opened up broad avenues for interaction. The
Model Theory of Fields program held at the Mathematical Sciences Research
Institute from January to June 1998 sought to capitalize on the intense activity
that has taken place in the discipline by bringing together for an extended period
of time model theorists and mathematicians working in the areas of some of the
most exciting applications.

Model theory’s stock-in-trade is the analysis of the so-called definable subsets
of a mathematical structure. The definable subsets of classical mathematical
structures have long occupied a central position in algebraic and geometric inves-
tigations; the constructible sets in algebraic geometry and the semialgebraic sets
in real geometry provide two notable examples. Although the model-theoretic
viewpoint may have supplied these areas with some basic results, it did not offer
enough until recently for practitioners to notice that the objects that they study
with their own sophisticated methods could be illuminated by model theory.

For an area of mathematics to contribute significantly to another, the new
point of view must add to the understanding of the objects in the area of appli-
cation, and not, for example, merely provide convenient new terminology. In the
case of the model theory of fields, the subject around which the articles in this
volume are organized, the deep advances that have been made in abstract model
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theory over the last thirty or forty years have generated concepts and methods
that have found meaning and application in classical mathematical contexts,
ultimately leading to important new results in these areas.

This volume collects articles arising from lectures presented at the Introduc-
tory Workshop that inaugurated the MSRI model theory of fields program (Jan-
uary 1998). Section 1 of this overview introduces each article, providing a sense
of our conception of the workshop minicourses. Sections 2 and 3 are intended to
give a reader unfamiliar with Model Theory a gentle conceptual introduction to
its main themes. We hope that these two modest aims shall whet the reader’s
appetite to explore the excellent contributions that follow, for which we herewith
express our gratitude to the authors.

We also thank Silvio Levy for compiling the contributions into a book, and the
Director and Deputy Director of MSRI for their encouragement of this project.

1. The Organization of This Volume

The goal of this volume, like the workshop on which it is based, is to serve
as a guide to current developments in model theory and its many geometric
applications in the model theory of fields. It attempts to provide the reader with
a unified introductory account of contemporary pure model theory, the model
theory of fields, and the different aspects of geometry in which the model theory
has found its most significant recent applications.

The articles in this volume are organized around three themes which roughly
speaking comprise the minicourses on which the workshop was based: the model
theory of fields, dimension theory, and geometry. The expression “model theory
of fields”connotes the analysis of various classes of fields, including identifying el-
ementary classes, finding axioms for these classes, and determining the definable
sets in fields belonging to each class (relative quantifier elimination). This tra-
dition goes back to Alfred Tarski and Abraham Robinson. The more recent de-
velopments are in many instances informed by concepts from pure model theory
such as forking and orthogonality. “Dimension theory” deals with the conceptual
apparatus of pure model theory and the associated body of results. The term
“dimension theory” is employed because this apparatus typically involves the
assignment of dimensions to definable sets in suitable structures. “Geometry”
refers (somewhat imprecisely) to those areas of mathematics in which most of
the new applications of model-theoretic methods and analyses have been made.

The diversity of material within each of these topics suggested the somewhat
unconventional approach that each minicourse be divided among several speak-
ers. The organization of this volume reflects that of the workshop in that the
articles forming each of the three minicourses are grouped together. Within
each group the order of the papers is roughly parallel. Although by no means
perfect, this parallelism is intended to emphasize how the several components of
each minicourse correlate. It also should help a reader interested in a particular
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aspect of the subject to locate relevant material more easily. Bearing these or-
ganizational themes in mind, we now briefly review the contents of the articles.

David Marker’s first article, Introduction to model theory, serves as a preamble
to the three minicourses. It provides an excellent survey of elementary model
theory that prepares a non-logician well for what is to come. It also covers
some of the classical model theory of the first classes of fields to be studied and
understood from the model-theoretic point of view: the algebraically closed and
real closed fields.

The next three articles survey the model theory of fields. They examine fields
with additional structure that have been treated successfully by model theory,
reflecting the range of model-theoretic phenomena encountered in the abstract
theory and also including several of the algebraic objects that arise in the appli-
cations. Lou van den Dries’ paper, Classical model theory of fields, deals with
the fields of real and p-adic numbers, and expansions of these fields obtained by
adding analytic structure. Fields enriched by adjoining a derivation are discussed
in Marker’s Model theory of differential fields. Some of the most important recent
applications of model theory have been to Diophantine questions, and Marker
briefly indicates how differential fields enter into Hrushovski’s model-theoretic
proof of the Mordell–Lang conjecture for function fields of characteristic zero
(see Section 5 of his article). In A Survey of the model theory of difference fields,
Zoé Chatzidakis focuses on fields to which a distinguished automorphism has
been adjoined. Hrushovski also has applied model-theoretic results concerning
difference fields to Diophantine questions, and in Section 4 of her article Chatzi-
dakis outlines his proof of the Manin–Mumford conjecture, including the explicit
bounds his argument yields.

The next two articles deal with “dimension theory,” that is, pure model the-
ory. Dugald Macpherson’s article, Notes on o-minimality and variations, concen-
trates on the body of pure model-theoretic results dating from the early 1980’s
that place the theory of semialgebraic and subanalytic sets from real geometry
into an abstract context. The article by Bradd Hart, Stability and its variants,
provides an introduction to the vast body of work on stable and simple theories.
This aspect of pure model theory has its origins in Morley’s proof of the  Los
conjecture in the 1960’s and took flight as a full-fledged theory with the deep
work of Shelah in the 1970’s around the classification of first order theories ac-
cording to whether or not their class of models has a “structure theory”. Even
though o-minimality and stability/simplicity have developed separately, the two
theoretical frameworks share strong conceptual similarities that emerge upon
comparing the two articles. We shall comment further upon this in Section 3
below. Moreover, several of the technical notions that play a significant role
in the abstract theory have clear meaning and significance in several of model
theory’s most striking applications in other areas of mathematics. This theme
emerges in several articles in the volume.
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The final three contributions to the volume, drawn from the introductory
workshop’s geometry minicourse and written by experts from outside model the-
ory, accomplish several goals: they supply the mathematical background for
many of the most notable applications of the model theory of fields, offer an
introductory discussion of several of these developments, and raise provocative
questions and/or suggest directions in which model theory might play a future
role.

The article by Edward Bierstone and Pierre Milman, Subanalytic geometry,
provides an introductory account of semialgebraic and subanalytic subsets of Rn

(or Cn) that indicates how this theory relates to o-minimality (see also van den
Dries’ article). It further suggests classes between the semialgebraic and suban-
alytic sets, based on local behavior of analytic mappings, that are “tame” from
an algebraic or analytic point of view in much the same spirit as Grothendieck’s
vision of “tame topology”. Jan Denef’s article, Arithmetic and geometric appli-
cations of quantifier elimination for valued fields, surveys how the rich interaction
between model theory and p-adic and rigid analytic geometry has yielded im-
portant number-theoretic and geometric applications. He also introduces some
of the most recent exciting developments along the intersection between p-adic
and rigid analytic geometry on the one hand, and model theory on the other.
In Section 4 of his article, Denef discusses new invariants for algebraic varieties
in which motivic measure and integration takes the place of p-adic integration.
Barry Mazur’s article, Abelian varieties and the Mordell–Lang Conjecture, the
concluding paper in the volume, focuses on the mathematics surrounding the
Mordell–Lang conjecture (see also Marker’s article, Introduction to the model
theory of differential fields). The article situates the Mordell–Lang conjecture
in historical perspective as a counterpart in higher-dimensions to the Mordell
conjecture proved by Faltings. Section 6 includes a proof of the Mordell–Lang
conjecture over number fields in the rank one case, using Chabauty’s method of
embedding the situation in the p-adics and the theory of p-adic Lie groups. In
Section 7 Mazur discusses the reduction of the Mordell–Lang conjecture to the
number field case, and in Section 8 he mentions several questions regarding ef-
fectivity issues in the number of solutions of Diophantine equations that are very
much in the spirit of model theory and are intended to suggest further interplay
between the two fields.

2. Structures and Definable Sets

Our thematic overview of the volume begins with a brief primer of the ob-
jects studied in model theory. (Marker’s Introduction to model theory offers a
thorough treatment.) For a model theorist, a mathematical structure M is a
set M equipped with a set of operations on M , a set of relations on M , and
a set of distinguished elements of M . One example is provided by the natural
numbers N with the usual operations of addition and multiplication and the



OVERVIEW 5

constant element 0: the structure (N,+ , · , 0). The ordered field of real num-
bers with addition, multiplication, the distinguished elements 0 and 1, and the
binary relation <, that is, the structure (R,+ , · , 0, 1, < ), provides another. At
first glance, these examples might seem to be nothing more than mild variants
on the kinds of structures dealt with by algebraists.

The model-theoretic point of view is distinguished by the unified perspec-
tive it provides for mathematical structures viewed with respect to the degree
of generality described above. Thus on some level, the structures in the last
paragraph are, to a model theorist, to be treated no differently than structures
as diverse as the ordered field of real numbers augmented by all (partial) func-
tions f : [0, 1]n → R where f is the restriction to [0, 1]n of a function analytic
in a neighborhood of [0, 1]n, or the difference field (C(t),+ , · , σ) where σ is the
“shift operator” defined by

σ � C = identity and σ(t) = t+ 1.

Many further examples of fields enriched by additional structure figure in the
articles in this volume and several assume central roles.

What is it then that provides this unified perspective? It is not just the scope
and generality of structures in the above sense that makes the model-theoretic
point of view distinctive. Rather it is the objects that model theory attaches
to these structures, and the tools and methods that model theory employs to
analyze and understand these objects that sets the subject apart. Just as a
complex analyst, for example, concentrates on holomorphic functions on the
field of complex numbers, model theory focuses on a particular class of relations
and functions, the so-called definable ones.

For a set to be definable means simply that it can be “defined” by a formula in
first-order logic in the language of the structure. But what is meant by this? We
shall be informal, referring the reader to Section 1 of Marker’s Introduction to
model theory for the complete details. To each structure M, there corresponds a
formal language L which includes an n-place function symbol f̂ for each n-place
function f in M, an n-place relation symbol R̂ for each n-place relation R in M,
and a constant symbol ĉ for each distinguished element in M. Each symbol in
L is interpreted in M by the corresponding function, relation, or distinguished
element. The ̂ is usually deleted when writing the symbols in L where no
confusion can arise. Formulas in the language L are the meaningful finite strings
of symbols built from the symbols of L, =, variables, the logical connectives ¬,
∧, ∨, and the quantifiers ∃ and ∀. Here, “meaningful” refers to nothing more
than a carefully executed version of the usual kind of symbolic expression that
mathematicians write daily.

For those encountering formulas for the first time, two key restrictions should
kept in mind: formulas are finite in length and quantification is limited to in-
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dividual elements of the structure.1 For example, the disjunction
∨
n∈N x

n = e,
indexed by the natural numbers, which captures the torsion elements of a group
(G, · , e), is not a first-order formula because the disjunction is infinite, and hence
the expression is infinite in length. As another example, quantification over all
ideals of a ring (R,+ , · , 0, 1) is not permitted since ideals are not elements of
the ring.

The variables in an L-formula ϕ are either bound to a quantifier in ϕ or not, in
which case they are called free. Then, roughly speaking, an L-formula ϕ whose
free variables are x1, . . . , xn describes the definable set X ⊂ Mn in a structure
M = (M, . . . ) consisting of all (a1, . . . , an) ∈ Mn which, when substituted for
x1, . . . , xn, make the formula true when the symbols in L are interpreted by the
corresponding objects in M and the set-theoretic operations corresponding to the
logical symbols ¬ (complement), ∧ (intersection), ∨ (union), and ∃ (projection)
are performed as dictated by the formula.

Definable sets also can be given a simple and succinct set-theoretic character-
ization. We will be somewhat glib here; the precise characterization is given in
Proposition 1.3 of Marker’s article (page 18). Let M = (M, . . . ) be a structure.
For each n ≥ 1 let Dn be the smallest collection of subsets of Mn that contains
Mn, all n-ary relations in M, and the graphs of all functions f :Mn−1 → M in
M, and that is closed under taking generalized diagonals, complements, unions,
intersections, and projections (from sets in Dm for m > n). A set X ⊆ Mn,
where n ≥ 1, is definable in M if X ∈ Dn. Although correct and relatively easy
to state, this set-theoretic version of definability reveals neither why definable
sets are so natural and useful, nor, for that matter, why this class of sets is so
named.

The power the point of view of definability confers comes from the fact that
many of the sets that arise in mathematics can be described by formulas in
exactly the way that mathematicians ordinarily do so. To illustrate, suppose
that R = (R,+ , · ,− , < , 0, 1, f) where f :R → R. Then the set of points at
which f is continuous or differentiable is definable in R, since the the usual
definitions of continuity and differentiability can be formalized in first-order logic
in the language L = {+, · ,− , < , 0, 1, f}. Likewise, most properties of elementary
real analysis and topology of definable sets and functions are readily seen to
be definable. Examples from a wide variety of contexts both of definable sets
and, equally importantly, non-definable sets (such as the torsion elements in an
arbitrary group (G, · , e)) are provided in Marker’s Introduction to model theory
as well as throughout the volume.

Although first-order definability might appear to impose rather severe limi-
tations on the objects that model theory studies, it does in fact supply rich and
interesting classes of sets and functions. In fact, as mentioned in both Marker’s

1Logicians have developed and studied logics that relax either or both of these restric-
tions with mixed success, but first-order logic appears to provide the best balance between
expressibility and manageability.
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introductory article and van den Dries’ contribution, Gödel’s Incompleteness
Theorem implies that the definable sets in (N,+ , · , 0, 1) are complicated to the
point of “wildness,” and thus exhibit such poor model-theoretic behavior as to
escape analysis. As will be evident from the diverse range of structures and ap-
plications discussed in this volume, manageable, or “tame”, behavior does occur
regularly enough. And even in contexts in which model-theoretic analysis might
appear at first to be of limited value, it sometimes is possible (and desirable)
to carry out the analysis in a setting with a richer collection of definable sets
and with good model-theoretic properties. This point emerges in the striking
applications of model theory to Diophantine problems as described in Marker’s
article on differential fields and Chatzidakis’ article.

3. Analysis of Definable Sets and Applications

The preceding discussion of definable sets and structures is a necessary prelude
to the most important aspect of the model-theoretic enterprise: the theoretical
methods that have been developed for understanding definable sets and the ap-
plications that ensue.

As in any area of mathematics, model theorists analyze definable sets by de-
vising measures of simplicity or tractability. Two main threads appear here.
The first deals with the complexity of a definable set based on the “structural
complexity” of a formula required to define the set. Just as the set-theoretic
operation of projection can transport us outside of the class of Borel subsets of
Euclidean space, projection, in the guise of existential quantification, typically
adds complexity to definable sets. Indeed, mathematicians have often remarked
that a proposition with more than three alternations of quantifiers strains the
understanding. Thus, the “structural complexity” of a formula might be mea-
sured by whether or not it contains quantifiers or by counting the number of
alternations of blocks of universal and existential quantifiers appearing in what
is called prenex normal form of the formula. This kind of analysis typically
shows that the definable sets of a structure satisfy a general hypothesis that
subsequently permits the application of a general theoretical framework for the
analysis of the definable sets, as we now describe.

The second approach to the analysis of definable sets that model theorists have
developed classifies these sets by various abstract yet natural measures that as-
sign to the sets a combinatorial, algebraic, or geometrically motivated notion of
dimension. The two principal avenues of “dimension theory”, as we have called
this second approach to the analysis of definable sets, are stability and simplic-
ity, the subject of Hart’s article, and o-minimality and some of its variants as
discussed in Macpherson’s survey. In each case, central to the development of a
dimension theory is a notion of independence, or freeness: for subsets A,B and
C of a structure M, the expression “B is independent from C over A” should
mean “C provides no more information about B than A does”. For example, for
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algebraically or real closed fields, the dimension-theoretic definition of indepen-
dence coincides with algebraic independence. The general theory has proven to
be remarkably rich and has demonstrated its mettle in many applications.

This second mode of analysis can in principle ignore the syntactic shape of a
defining formula for a set, and thus prima facie have little to do with the first
approach. Yet some of the most important applications are often found where
the two threads cross. As suggested earlier, if the definable sets of the structures
in some class yield to the first kind of analysis, model theorists then may be able
to show that the class of structures is amenable to the powerful model-theoretic
tools and methods afforded by the second kind of analysis. We now take up in
more detail these two approaches to understanding definable sets.

Quantifier elimination and generalizations. We begin with a simple illus-
tration of the analysis of definable sets via the “structural complexity” of their
defining formulas. Marker’s introduction to model theory, his article on differ-
ential fields, and the contributions by van den Dries, Denef, and Bierstone and
Milman include many more.

A set X ⊆ Mn of a structure M = (M, . . . ) is quantifier-free definable if
there is a formula in the language of M not containing quantifiers that defines
X. For a field F = (F,+ , · , 0, 1) the quantifier-free definable sets are exactly the
constructible sets; boolean combinations of the zero sets of polynomials over F .
Generally speaking, the class of definable sets in a field includes many more sets
than the constructible sets (e.g., in the field of rational numbers; see Marker’s
introductory article). If F is algebraically closed, Chevalley’s theorem that the
projection of a constructible set is constructible implies — since existential quan-
tification corresponds to projection — that the definable sets are exactly those
that are quantifier-free definable. In this case the structure is said to have quan-
tifier elimination. More is true. For a formula ϕ(v1, . . . , vn) there is a quantifier-
free formula ψ(v1, . . . , vn) that defines the same set as ϕ in all algebraically
closed fields. This kind of uniformity plays a crucial role in both pure model
theory and applications. Among the most well-known examples of theories —
that is, consistent sets of first-order sentences — with quantifier elimination are
the theory of real closed fields, the theory of differentially closed fields, and,
for each p, the theory of p-adically closed fields. Others appear throughout the
volume — in particular see van den Dries’ and Denef’s articles.

Quantifier elimination shows how the power of definability and the simplicity
of definable sets can play off each other. The full strength of definability per-
mits the definition of a priori complicated sets in the structure; that a set has
a quantifier-free description implies on the other hand that it is in some sense
simple. Several applications appear in Marker’s introductory article, and Denef
presents in Section 1 of his article his beautiful use of quantifier elimination for
the p-adic numbers Qp, in the language with +, · ,− , 0, 1 augmented by predi-
cates for d-th powers for all d = 2, 3, 4, . . . , to prove the rationality of several
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Poincaré series. (See Section 2 of van den Dries’ article for a detailed exposition
of quantifier elimination for valued fields).

It should be noted that quantifier elimination is highly sensitive to the lan-
guage of the class of structures under consideration. An artificial model-theoretic
trick shows that if the language of a structure is enriched sufficiently then the
structure can be made to have elimination of quantifiers (see Section 4 of Marker’s
introductory article). This artifice is of little use, though, since the quantifier
elimination so obtained reveals nothing about the definable sets. Finding an ap-
propriate language in which a class of structures has quantifier elimination is a
difficult and subtle issue. For further discussion of this we refer again to Denef’s
and van den Dries’ articles.

Sometimes quantifier elimination in a particular language fails but yet the
definable sets in a structure still have a manageable and useful form. An in-
structive example of this is model completeness. One of the several equivalent
definitions is that a theory is model complete if for every formula ϕ there is an
existential formula ψ, i.e., a formula consisting of a block of existential quan-
tifiers followed by a quantifier-free formula, such that ϕ and ψ are equivalent,
that is, they define the same sets in all structures satisfying the theory. Model
completeness thus serves as the next best substitute for quantifier elimination.

An example may help bring this into sharper focus. The ordered real field
(R,+ , · , 0, 1, < ) has quantifier elimination, but an adaptation of an old argu-
ment of Osgood demonstrates that quantifier elimination fails in the real field
augmented by any collection of total analytic functions. In particular, this is true
in the real exponential field (R,+ , · , 0, 1, < , ex), and so model completeness is
the best that could be expected. A important theorem of Wilkie proved in 1991
shows that this structure is in fact model complete, and thus every definable set
is the projection of a quantifier-free definable set. Results of Khovanskii from
the 1970’s provide a good understanding of the quantifier-free definable sets, and
thus Wilkie’s theorem yields a clear picture of all definable sets. The analysis
afforded by model completeness in turn suffices to conclude that the real ex-
ponential field is o-minimal, and hence its definable sets enjoy the many good
geometric properties that the theory of o-minimality provides (see Section 4.3 of
van den Dries’ articles). We shall say more about o-minimality in the “dimension
theory” subsection below.

Yet another form of partial or relative quantifier elimination emerges in the
first-order theory of modules. The language of modules over a ring R includes
a symbol + for addition, 0, and, for each r ∈ R, a 1-place function symbol for
multiplication by r. For a complete first-order theory T of modules (see page 19
in Marker’s article for the definition of completeness), every formula is equivalent
to a boolean combination of “positive-primitive” formulas, that is, formulas in
which a block of existential formulas precedes a conjunction of atomic formulas.
This analysis implies that for a module (M,+ , . . . ) every definable subset of Mk,
where k ∈ N, is a boolean combination of definable subgroups of Mk. In a more
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general context, the so-called 1-based groups (elaborated further in Section 3.3
of Hart’s article and Section 4 of Chatzidakis’ article), it also can be shown
that all definable sets are boolean combinations of definable subgroups. This
fact plays an crucial role in Hrushovski’s applications of model theory to the
Mordell–Lang and Manin–Mumford Conjectures (see Section 5 of both Marker’s
and Chatzidakis’ articles).

3.1. Dimension theory. We turn now to the second major approach to
the analysis of definable sets via what we call “dimension theory”. This has
constituted perhaps the central theme in the development of pure model theory
for almost 40 years. There have been two main strands present here. The
first, beginning with the seminal work of Morley in the 1960’s and developed
profoundly by Shelah in the following decade provides a combinatorial/algebraic
account of dimension theory. Stable, and more generally simple theories are the
subject of this analysis, which is elaborated in Hart’s article. The second strand
yields a more topological/algebraic version of dimension theory that comprises
the main focus of Macpherson’s article. Although these two dimension theories
apply to disjoint classes of structures they share several common conceptual
features. We here offer some introductory remarks that should highlight these
themes.

The beginnings of the dimension-theoretic analysis of definable sets in struc-
tures that are stable or simple runs as follows. Let M = (M, . . . ) be a structure.
Since equality is included in every language, for every n ∈ N and a1, . . . , an ∈M ,
the sets {a1, . . . , an} and M \ {a1, . . . , an} must be definable subsets of M in M:
they are defined by the formula

v = a1 ∨ · · · ∨ v = an

and its negation, respectively. Thus, the finite and cofinite subsets of the universe
of a structure must always be definable. With a slight twist, the structures
M = (M, . . . ) that are the least complicated from the viewpoint of definability
are those for which the definable subsets of M are precisely the sets that must
be definable, that is, the finite and cofinite sets. The twist is that reference
must be made not to individual structures but rather to all structures for a
particular language satisfying a set of axioms, that is, a theory: a theory T is
strongly minimal if for every structure M = (M, . . . ) satisfying T the definable
subsets of M are exactly the finite and cofinite sets. Elimination of quantifiers
for the theory of algebraically closed fields shows that every definable subset of
the universe of an algebraically closed field is defined by a formula which is a
boolean combination of polynomial equalities in one variable. As the set given
by such a formula is finite or cofinite, the theory of algebraically closed fields is
strongly minimal.

As mentioned earlier, by adjoining new symbols to the language, a structure
is endowed with a richer collection of definable sets. The balance to strike here
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is that the richer expressive power of the expanded structure should not yield an
intractible definability theory. Thus, if a predicate for the natural numbers is ad-
joined to the complex numbers, the structure becomes as “wild” as (N,+ , · , 0, 1)
itself and so subject to the Gödel phenomenon mentioned earlier. This is not
always the case. The theory of differentially closed fields, discussed in depth
in Marker’s second article, provides an important example. A differential field
is a field of characteristic zero equipped with a derivation. The language for
this structure is the language of fields with a function symbol for the derivation
adjoined. The theory of differentially closed fields is axiomatized by appropriate
closure axioms asserting the existence of zeroes for differential polynomials. This
theory too has quantifier elimination. It follows that the definable sets satisfy
a hypothesis, ω-stability, that ensures a highly manageable model-theoretic di-
mension theory in which there are definable sets having “transfinite dimension”.

For the study of definable sets, strong minimality is relativized to definable
sets in a structure. For a structure M = (M, . . . ) and a definable set X ⊆ Mn,
we say that X is strongly minimal if every definable subset of X in M is finite
or cofinite. Strongly minimal sets can be thought of as “irreducible” sets of
dimension one. They form the first layer of a dimensional analysis of definable
sets based on what is called Morley rank (see Definition 1.16 in Hart’s article).
In the context of algebraically closed fields, the Morley rank of a definable (=
constructible) set agrees with its algebro-geometric dimension. The ω-stable
theories can be shown to be exactly those theories for which every definable
set has ordinal-valued Morley rank. The most general dimensional analysis,
Shelah’s theory of forking, applies to the class of stable, or more generally simple
theories. The sweep of this theory is remarkably broad given the consequences
that flow from it (see Sections 2 and 3 of Hart’s article). Among the theories of
fields discussed in this volume — see the articles by Marker and Chatzidakis —
it embraces algebraically, differentially, and separably closed fields, pseudo-finite
fields, and ACFA, the model companion of the theory of difference fields. The
crucial point when it comes to Hrushovski’s applications to diophantine geometry
(see Marker’s article on differential fields as well as those by Chatzidakis and by
Mazur) is that objects of arithmetic type, such as the torsion points of an abelian
variety or the points of an abelian variety over a function field can be embedded
in definable groups in enriched structures to which the general theory applies.

Strongly minimal sets and more general versions of “1-dimensional” or “min-
imal” sets (see Hart’s and Chatzidakis’ articles) assume an important position
in the model-theoretic analysis employed in these applications. Generally speak-
ing, the structure of such sets also determines the structure of finite-dimensional
sets, and so understanding the pregeometry given by model-theoretic dependence
in “minimal” sets is imperative. For many years the only known examples of
such a pregeometry were trivial, “module-like” (locally modular), or “field-like”
(i.e., permit the interpretation in a precise model-theoretic sense of an infinite
field) — see Section 4 of Marker’s article and Example 1.26 in Hart’s article. In
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the late 1970’s, early on in the development of the theory, Zil’ber boldly conjec-
tured that these are the only possible cases. This conjecture exercised a powerful
and positive influence on model theory in the 1980’s (see the statement of the
Zil’ber principle right after Example 1.26 in Hart’s article). Zil’ber’s conjecture
ultimately proved false: in the late 1980’s Hrushovski found counterexamples.
With the introduction of the notion of a Zariski geometry, however, Hrushovski
and Zil’ber isolated an important class of strongly minimal sets for which the
conjecture holds (see Section 4 of Marker’s article on differential fields, as well
as Hart’s article). Furthermore, the “minimal” sets in the enriched structures
that figure in Hrushovski’s proof of the Mordell–Lang Conjecture can be shown
to be Zariski geometries, and Hrushovski avails himself of this in his proof.

The field of real numbers presents a different situation. The ordering on R
actually is definable in the field language:

x < y ⇐⇒ ∃u (y = x+ u2 ∧ u 6= 0).

Hence, the order relation can be adjoined to the real field structure without al-
tering the class of definable sets. It follows that the real field is not stable, or
even simple — see Hart’s article — and so cannot be analyzed by the machinery
described above. Yet, as the ordered field of real numbers, actually the theory of
real closed fields, has quantifier elimination, the definable sets are exactly those
which are defined by boolean combinations of polynomial equalities and inequal-
ities, that is, the semialgebraic sets. These have been studied with considerable
success by real algebraic geometers (see the articles by Bierstone and Milman
and van den Dries). Observe in particular that the definable subsets of R in
the real field consist of finitely many open intervals and points. As these sets
are those that must be definable in any linearly ordered structure, the definable
subsets of R in the real field are uncomplicated if one adopts the right point of
view.

A linearly ordered structure M = (M,< , . . . ) is order-minimal, or o-minimal
if every definable subset of M is the union of finitely many points and open in-
tervals, that is those that must be definable in the presence of a linear ordering.
O-minimal structures — see Macpherson’s article for a survey of this subject —
permit a dimension-theoretic analysis of definable sets that accords with the
geometry of the definable sets. In particular, many of the geometric and ana-
lytic properties of semialgebraic sets extend to o-minimal structures, particularly
those whose underlying set is R (see van den Dries’ and Macpherson’s article).
Furthermore, many analogues of theorems from the stable context can be proved
under the hypothesis of o-minimality. For example, a version of Zil’ber’s con-
jecture has been proved by Peterzil and Starchenko in the o-minimal setting.
Notions of minimality relative to other basic predicates also are mentioned in
Section 4 of Macpherson’s contribution.

While a priori more limited in scope than stability and simplicity, what has
made o-minimality successful is that it has been proved that o-minimality is
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preserved under adjoining many analytically important functions to the real field.
Wilkie’s theorem that the structure (R,+ , · , < , 0, 1, ex) is (model complete and)
o-minimal was the first dramatic result in this direction and Section 4 of van den
Dries’ article discusses many others. These theorems have in turn been applied to
problems in real analytic and algebraic geometry, and recently have been invoked
in work in the representation theory of Lie groups. To illustrate, the well-known
semialgebraic fact that there are finitely many homeomorphism types in Rm of
the zero sets of polynomials p(x1, . . . , xm) ∈ R[x1, . . . , xm] of some fixed degree d
can be extended via o-minimality to establish that the same holds true if “of some
fixed degree d” is replaced by “with no more than d monomials” (of arbitrary
degree). The proof takes advantage of a form of uniformity in parameters that
the model theory provides. Further afield, the o-minimality of expansions of the
real field have seen applications in as seemingly distant subjects as neural nets
and control theory.
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