CHAPTER 8
CONCLUSIONS

8.1 General Conclusions

In this book, we have attempted to give, at a fa_irly advanced }evel o(f
rigor, a unified treatment of cur'rent methodologies for the design an
analysis of adaptive control algorithms. o . .

First, we presented several schemes for the adaptive identification
and control of linear time invariant systems. An output error sche_;ined,
an input error scheme, and an indirect scheme were derived in a uni ;*.1
framework. While all the schemes were §hown to be globally stable, t- e
assumptions that went into the derivation qf the schemes were.qune
different. For instance, the input error adgptlve control scheme did (rilolt
require a strictly positive real (SPR) condition fqr the reference ‘model.
This also had implications for the transient behavior of the adaptive sys-
tems. .

A major goal of this book has been the presentation of a number oj
recent techniques for analyzing the stability, parameter convergence an
robustness of the complicated nonlinear dynamics inherent in the adap}
tive algorithms. For the stability proofs, we presented a sequence 0
lemmas drawn from the literature on input-output L, stabllxty.. For the
parameter convergence proofs, we used results_ from gqnerahzed ha;lr-
monic analysis, and extracted frequency-domain con_dmons. For \t,V e
study of robustness, we exploited Lyapunoxf and averaging methods. 13
feel that a complete mastery of these techniques will lay the groundwor
for future studies of adaptive systems.
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While we did not deal explicitly with discrete time systems, our
presentation of the continuous time results may be transcribed to the
discrete time case with not much difficulty. The operator relationships
that were used for continuous time systems (L, spaces) also hold true for
discrete time systems (!, spaces). In fact, many derivations may be
simplified in the discrete time case because continuity conditions (such
as the regularity of signals) are then automatically satisfied.

Averaging techniques have proved extremely useful and it is likely
that important developments will ‘still follow from their use. It is
interesting to note that the two-time scale approximation was not only
fundamental to the application of averaging methods to convergence
(Chapter 4) and to robustness (Chapter 5), but was also underlying in the
proofs of exponential convergence (Chapter 2), and global stability
(Chapter 3). This highlights the separation between adaptation and con-
trol, and makes the connections between direct and indirect adaptive
control more obvious.

Methods for the analysis of adaptive systems were a focal point of
this book. As was observed in Chapter 5, algorithms that are stable for
some inputs may be unstable for others. While simulations are
extremely valuable to illustrate a point, they are useless to prove any glo-
bal behavior of the adaptive algorithm. This is a crucial consequence of
the nonlinearity of the adaptive systems, that makes rigorous analysis
techniques essential to progress in the area.

8.2 Future Research

Adaptive control is a very active area of research, and there is a great
deal more to be done. The area of robustness is essential to successful
applications, and since the work of Rohrs et al, it has been understood
that the questions of robustness for adaptive systems are very different
from the same questions for linear time-invariant systems. This is due
in great part to the dual control aspect of adaptive systems: the refer-
ence input plays a role in determining the convergence and robustness
by providing excitation to the identification loop. A major problem
remains to quantify robustness for adaptive systems. Current theory
does not allow for the comparison of the robustness of different adaptive
systems, and the relation to non-adaptive robustness concepts. Closer
connections will probably emerge from the application of averaging
methods, and from the-frequency-domain results that they lead to.

Besides these fundamental questions of analysis, much remains to
be done to precisely define design methodologies for robust adaptive sys-
tems and in particular a better understanding of which algorithms are
more robust. Indeed, although the adaptive systems discussed in this
book have identical stability properties in the ideal case, there is
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evidence that their behavior is drastically different in the presence of
unmodeled dynamics. A better understanding of which algorithms are
more robust will also help in deriving guidelines for the improved design
of robust algorithms.

While we have extensively discussed the analysis of adaptive sys-
tems, we also feel that great strides in this area will come from experi-
ences in implementing the algorithms on several classes of systems.
With the advent of microprocessors, and of today’s multi-processor
environments, complicated algorithms can now be implemented at very
high sample rates. The years to come will see a proliferation of tech-
niques to effectively map these adaptive algorithms onto multiprocessor
control architectures. There is a great deal of excitement in the control
community at large over the emergence of such custom multiprocessor
control architectures as CONDOR (Narasimhan et a/ [1988]) and
NYMPH (Chen et a/ [1986]). In turn, such advances will make it possi-
ble to exploit adaptive techniques on high bandwidth systems such as
flexible space structures, aircraft flight control systems, light weight robot
manipulators, and the like. While past successes of adaptive control
have been on systems of rather low bandwidth and benign dynamics, the
future years are going to be ones of experimentation on more challenging
systems.

Two other areas that promise explosive growth in the years to come
are adaptive control of multi-input multi-output (MIMO) systems, and
adaptive control of nonlinear systems, explicitly those linearizable by
state feedback. We presented in this book what we feel is the tip of the
iceberg in these areas. More needs to be understood about the sort of
prior information needed for MIMO adaptive systems. Conversely, the
incorporation of various forms of prior knowledge into black-box models
of MIMO systems also needs to be studied. Adaptive control for MIMO
systems is especially attractive because the traditional and heuristic tech-
niques for SISO systems quickly fall apart when strong cross-couplings
appear. Note also that research in the identification of MIMO systems
is also relevant to nonadaptive algorithms, which are largely dependent
on the knowledge of a process model, and of its uncertainty. One may
hope that the recently introduced averaging techniques will help to
better connect the frequency-domain properties of adaptive and nona-
daptive systems.

A very large class of nonlinear systems is explicitly linearizable by
state feedback. The chief difficulty with implementing the linearizing
control law is the imprecise knowledge of the nonlinear functions in the
dynamics, some of which are often specified in table look-up form.
Adaptation then has a role in helping identify the nonlinear functions
on-line to obtain asymptotically the correct linearizing control law. This
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approach was discussed in this book, but it is still in its early develop-
ment.. However, we have found it valuable in the implementation of an
adaptive controller for an industrial robot (the Adept-1) and are
curr@ntly working on a flight control system for a vertical take-off and
landing aircraft (the Harrier).

' In addition to all these exciting new directions of research in adap-
tive control, most of which are logical extensions and outgrowths of the
developments presented in the previous chapters, we now present a few
other new vistas which are not as obvious extensions.

A “Universal” Theory of Adaptive Control
Whnl.e all the adaptive control algorithms developed in this book
required assumptions on the plant—in the single-input single-output
case, _the order of the plant, the relative degree of the plant, the sign of
ic; hxgh-frequency gain, and the minimum phase property of the plant—
It is interesting to ask if these assumptions are a minimal set of assump-
tions. Indeed, that these assumptions can be relaxed was established by
Morse [1985, 1987], Mudgett and Morse [1985], Nussbaum [1983], and
Martensson [1985] among others. Chief under the assumptions’ that
could be relaxed was the one on the sign of the high-frequency gain.
There'is a simple instance of these results which is in some sense
representative of the whole family: consider the problem of adaptively
Stabilizing a first order linear plant of relative degree | with unknown
gain ky; i.e.,

Vp = =y, + kyu (8.2.1)
with &, different from zero but otherwise unknown, and a, unknown. If

the sign of k, is known and assumed positive, the adaptive control law

u = dyt)y, (8.2.2)
and

dy = -y} (8.2.3)

can be shown to yield Vp = 0 as t - co. Nussbaum [1983] proposed

:)hat if the sign of k, is unknown, the control law (8.2.2) can be replaced
y

U = dgi(t) cos (do(1))y, (8.2.4)
with (8.2.3) as before. He then showed that y, - 0 as 1 — o, with

dy(t) remaining bopnded. Heuristically, the feedback gain d¢ cos(dy) of
(8.2.4) alternates in sign (“searches for the correct sign™) as d, is
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decreased monotonically (by (8.2.3)) until it is large enough and of the
‘““correct sign” to stabilize the equation (8.2.1).

While the transient behavior of the algorithm (8.2.3), (8.2.4) is
poor, the scheme has stimulated a great deal of interest to derive adap-
tive control schemes requiring a minimal set of assumptions on the plant
(universal controllers). A further objective is to develop a unified frame-
work which would subsume all the algorithms presented thus far, Adap-
tive systems may be seen as the interconnection of a plant, a parameter-
ized controller, and adaptation law or tuner (cf. Morse [1988]). The
parameterized controller is assumed to control the process, and the tuner
assumed to tune the controller. Tuning is said to have taken place when
a suitable tuning error goes to zero. The goal of a universal theory is to
give a minimal set of assumptions on the process, the parameterized
controller, and the tuner to guarantee global stability and asymptotic
performance of the closed loop system. Further, the assumptions are to
contain as special cases the algorithms presented thus far. Such a theory
would be extremely valuable from a conceptual and intellectual stand-
point.

Rule-Based, Expert and Learning Control Systems

As the discussions in Chapter 5 indicated, there is a great deal of work
needed to implement a given adaptive algorithm, involving the use of
heuristics, prior knowledge, and expertise about the system being con-
trolled (such as the amount of noise, the order of the plant, the number
of unknown parameters, the bandwidth of the parameters’ variation...).
This may be coded as several logic steps or rules, around the adaptive
control algorithm. The resulting composite algorithm is often referred to
as a rule-based control law, with the adaptation scheme being one of the
rules. The design and evaluation of such composite systems is still an
open area of research for nonadaptive as well as adaptive systems,
although adaptive control algorithms form an especially attractive area
of application.

One can conceive of a more complex scenario, in which the plant
to be controlled cannot be easily modeled, either as a linear or nonlinear
system because of the complexity of the physical processes involved. A
controller then has to be built by codifying systematically into rules the
experience gained from operating the system (this is referred to as query-
ing and representation of expert knowledge). The rules then serve as a
model of the plant from which the controller is constructed as a rule-
based system, i.e. a conjunction of several logic steps and control algo-
rithms, Such a composite design process is called a rule-based expert
controller design. The sophistication and performance of the controller
is dependent on the amount of detail in the model furnished by the
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expert kaowledge. Adaptation and learning in this framework consists

in refining the 'rule-based model on the experience gained during the
course of operation of the system.

‘Wh1.1e 'this 'framework is extremely attractive from a practical point
of view, it is fair to say that no more than a few case studies of expert
control have bgen implemented, and state of the art in learning for rule-
based rpodels 1s rudimentary. In the context of adaptive control, a very
interesting study is found in Astrom er a/ [1986]. Adapted fro;n their

work is Figure 8.1 illustrating the structure
) 8.1 of an expert control
using an adaptive algorithm. P stem

| ALARMS, |
INTERRUPTS
RULE EXCITATION |, |
BASED MONITOR
OPERATOR
EXPERT
SYSTEM
IDENTIFIER
ALGORITHM [
y
EXOGENOUS
INeUT  —] CoNTROL .
ALGORITHM u PROCESS

Figure 8.1: Expert Adaptive Control System

Th; rule-basqd system _decides, based on the level of excitation, which of
a hbrary of' identification algorithms to use and, if necessary, to inject
new excitation. It also decides which of a family of control laws to use

and communicates its inferencing procedures to the operator. A supervi-
sor provides alarms and interrupts.

Adaptation, Learning, Connectionism and all those things...
While the topics in the title have the
namely, Fhe updergtanding, modeling and control of a given process, the
_ﬁelds of 1d'ent1ﬁcatlon_ and adaptive control have made the largest str,ides
in becoming a design methodology by limiting their universe of
@scourse tp a §mall (but practically meaningful) class of systems with
lmcar‘ or linearizable dynamics, and a finite dimensional state-space
Learning has, however, been merely parameter updating,. .

same general philosophical goals,
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The goals of connectionism and neural networks (see for example
Denker [1986] and the parallel distributed processing models) have been
far more lofty: the universe of discourse includes human systems and
the learning mimics our own human development. A few applications
of this work have been made to problems of speech recognition, image
recognition, associative memory storage elements and the like, and it is
interesting to note that the ‘learning’ algorithms implemented in the suc-
cessful algorithms are remarkably reminiscent of the gradient type and
least-squares type of update laws studied in this book. We feel, conse-
quently, that in the years to come, there will be a confluence of the
theories and techniques for learning.

APPENDIX

Proof of Lemma 1.4.2

Let
1
r(t) = fa(r)x('r)dr (Al.4.1)
0
so that, by assumption
) = a(t)x(t) < a(@)rt) + a(t)u(r) (Al1.4.2)
that is, for some positive s()
He)=a(t)r(t)-a(t)u(r) + sty = 0 (Al1.4.3)
Solving the differential equation with 7(0) = 0
4 ja(o)a’a
r(t) = g e (a(r)u(r) - s(+)) dr (A1.4.4)
Since exp(.) and s(.) are positive functions
- ! fa(a)do'
r(t) < !e' a(ryu(r)dr (A1.4.5)

By assur.nption' X(@)=r@) + u(t) so that (1.4.11) follows. Inequality
(1.4.12) is obtained by integrating (1.4.11) by parts. 0O

331
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Proof of Lemma 2.5.2
We consider the system
x(t) A()x ()
yt) = C@)x() (A2.5.1)

and the system under output injection

w(t) = JAQ@)Y+ K@)C@) | w(r)
z(t) = CE)w(r) (A2.5.2)

where x,w e R", 4 e R"™ (C e R"*" K e R"*™ and
y,z € R™,
It is sufficient to derive ec uations the inequalities giving 8/, 87, 83.

Derivation of 8,
Consider the trajectories x(r) and w(r), corresponding to systems

(A2.5.1) and (A2.5.2) respectively, with identical initial conditions

x(to) = w(tg). Then
w(r) - x(7) = j@(f, 0)K(0) C(0) w(o) do (A2.5.3)
Let e(o) = K(a)C(o)w(a) /|K(a)C(a)w(s)| € RR", so that
[COHw()-x()|* = UC(r)é(r,a)K(o)C(o)W(o)da :

2
< | [lc@ e, e | K| | Clo)w(o)| do
o

< f[ C)ww)|?dv f| C(r)®(r, o) e(0)|? |k (0)]|®ds  (A2.5.4)
1) ty

using the definition of the induced norm and Schwartz inequality. On
the other hand, using the triangular inequality

1
o+ 9 1 p+6 =

2
[1c@wmltar| = | [ |C@x@)2ar
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o+ 6

- | [ 1CE @) - x(o)] 2 (A2.5.5)
o

so that, using (A2.5.4), and the UCO of the original system

g+ L

2
[ 1C@Hwmdr | = VB wty)
o

tg+6, 1

= [ Jlcowoml?as [Ic@ @, o)e)?|| K(o))2dodr
14

loy 1o

2 VB | w(to) -

o+ 46 _;.
[ 1CowE)2d
oy

ho+6,

[ JIK@I?ICtY8(r, 0)e(o) 2dadr|  (A2.5.6)

Iy 1o

Changing the order of integration, the integral in the last parenthesis
becomes

to+0 ty+ 46

[ 11 K@) j | C(r)®(r, o) e(o)| 2drdo (A2.5.7)
ty 4

Note that fp+6 -0 < 3, |e(o)| =1, while ®(r, o)e(o) is the solution of
system (A2.5.1) starting at e(s). Therefore, using the UCO property on
the original system, and the condition on X (), (A2.5.7) becomes

g+34 to+6

f | K(o)|? f |C(7) (7, 0)e(o)| 2drde < k;B, (A2.5.8)
fo g
Inequality (2.5.7) follows directly from (A2.5.6) and (A2.5.8).

Derivation of 8,
We use a similar procedure, using (A2.5.4)

[ICwE)|? < | Clr)x(r)|?
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T 2
+ |jC(T)q>(T,a)1<(a)C(a)w(a)da
ty

< | Cr)x(n)?
2

+ | [IC@w@] | C@e(r,a)e)] || K@) do
Iy

< |C)x(n)?
+ J’] Cv) w()| Zdel C(n)¥(r, a)e(o)| 2 | K (o) ||2d0 (A2.5.9)
lo t

and, forall tg <t < tp+6

! to+ 8 tr

[Ic@wmar < [ |C@x@) 2 + [ [| Coww)| s

I to foly
: f| C(r)®(r, a)e(o)]? | K (o) ||*do dr (A2.5.10)

to

and, using the Bellman-Gronwall lemma (lemma 1.4.2), together with
the UCO of the original system

{
Jlc@w@Idar < 8| wito)|?

{o

exp | [ [|C() (7, a)e(a)| || K (o) | *do dr (A2.5.11)

lo to

for all t, and in particular for ¢ = ¢+ 6.
The integral in the exponential can be transformed, by changing the
order of integration, as in (A2.5.8). Inequality (2.5.8) follows directly

from (A2.5.8) and (A2.5.11). 0O

Proof of Lemma 2.6.6
We wish to prove that for some §, a;, a;>0, and for all x with | x| = |
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lo+6

2
a; = f [(wT+eT)x] dr 2 a; forallty=0 (A2.6.1)

o
i {0 o]
By assumption, e € L,, so that f (e’x)*dr <m for some m > 0.
. . . 0
Since w is PE, there exist o, 81, 82> 0 such that
Iy+ao

B, = j wix)ldr = g, for all 75> 0 (A2.6.2)
ty

Let620[1+6—n?],a, =B, a;=m+4, (1+g1] so that
1

g+ 8 2 to+d lg+d
f [(wT+eT)x] dr > f wTx)2dr - f (eTx)dr
Iy T

lo

> g, (l+—;%}—m=a, (A2.6.3)
and
to+o 2 log+6 Ig+d
f [(wT+eT)xJ dr < f WwTx)2dr + f (eTx)?dr
Iy to N
< B, '1 +’£~] +m = a, (A2.6.4)
o

Proof of Lemma 2.6.7
We wish to prove that for some s, ap, @3>0, and for all x with | x| = |
o+48 2
ay 2 [ [f“[(wT)x ] dr 2 ay forallip20  (A2.6.5)

lo

Penote. u = wix and y = H(u) = HwTx) = A(wT)x (where the last
inequality is true because x does not depend on ). We thus wish to
show that

to+6

@y 2 [ yinydr = forallzg>=0  (A2.6.6)
Iy

Since w is PE, there exists o, 81, 82> 0 such that
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h+ao
ﬁz = f UZ(T)dT = Bl
[
In this form, the problem appears on the relationship between truncated
L, norms of the input and output of a stable, minimum phase LTI sys-
tem. Similar problems are addressed in Section 3.6, and we will there-
fore use results from lemmas in that section.

Let 6 = mo, where m is an integer to be defined later. Since u is
bounded, and y = H(u), it follows that y is bounded (lemma 3.6.1) and
the upper bound in (A2.6.6) is satisfied. The lower bound is obtained
now, by inverting 4 in a similar way as is used in the proof of lemma
3.6.2. Welet

foralltg =0 (A2.6.7)

2(s) = —E— q(s) (A2.6.8)
(s+a)
where a >0 will be defined later, and r is the relative degree of ﬁ(s),
Thus

i) = i‘—’;f’—)’ﬁ(s)z*(s) (A2.6.9)

The transfer function from Z(s) to p(s) has relative degree 0. Being
minimum phase, it has a proper and stable inverse. By lemma 3.6.1,
there exist k,, k; = 0 such that

lo+46 lg+d
[ 2@dr < ki [ y¥nydr + Ky (A2.6.10)
to lo
Since # is bounded
1o+6
f X r)dr < kyb (A2.6.11)

o

for some k3>0. Using the results in the proof of lemma 3.6.2
((A3.6.14)), we can also show that, with the properties of the transfer

function a” /(s +a)"
to+3d lo+48
[ Wmdr < [ 2mar+ Lkss 4k, (A2.6.12)
o

Iy

where ky is another constant due to initial conditions. It follows that
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fo+é to+s

2 1 r
’foy(r)dr r fuz(f)dr—zkﬁ—kz—k‘t

t

v

1 r
7(“1' m(ﬁl'—‘('l‘k:;(f)—kz—k‘; (A2613)

v

Note that r/q is arbitrary, and although &, depends on r/a, the con-
stants B, k3, and o do not. Consequently, we can let r/ a sufficiently
small that Bi~(r/a)kso 28,/2. We can also let m be sufficiently

large that mg, /2 - k, - k 2 By. Then the | i i
A 21— k4 1 n the lower bound in (A2.6.6) is

“ = g (A2.6.14)
0

Proof of Lemma 3.6.2

The proof of lemma 3.6.2 relies on the ili
hereafter, auxiliary lemma presented

Auxiliary Lemma
Consider the transfer function

K(s) = (sfa)’ a>0 (A3.6.1)

where 7 is a positive integer.
Let k(¢) be the corresponding impulse response and define

(o] T
8t-7) = [kl)ds = [k(t-ode 1-720 (A362)
t-7

-0
Then
k(t) = (r‘_’ ol le 20 (A3.6.3)
and k(¢) = O for ¢ <0. It follows that k(t) = 0 for all ¢, and
(o o] !
Ikl = z{k(a)do = [k(t-0)do = 1 (A3.6.4)
e o]

Similarly
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gt) = e t20 (A3.6.5)

k=1
and g(t) = 0 for 1 <0. It follows that g(¢) = 0O for all ¢, and

[0 o} {
gl = [g)de = [glt-o)de = = (A366)
0 oo a
a
We are now ready to prove lemma 3.6.2. Let r be the relative degree of
H, and
i(s) = ——— u(s) (A3.6.7)

( ay
where ¢ > 0 is an arbitrary constant to be defined later. Using (A3.6.7)

PGs) = (—S—‘;,ﬂﬁ(s)z(s) (A3.6.8)

Since the transfer function from Z(s) to p(s) has relative degree 0 and is
minimum phase, it has a proper and stable inverse. By lemma 3.6.1

“ 2y “p < bl“ Vi ”p + b2 (A3'6-9)
We will prove that

Null, < cll zllp + €2 (A3.6.10)
so that the lemma will be verified with a, = ¢b;, a, = b, + ca.

Derivation of (A3.6.10)
We have that

!
2(t) = 1) + [k(t -Du)dr (A3.6.11)

0
where ¢(f) is an exponentially decaying term due to the initial condi-
tions, and k(¢) is the impulse response corresponding to the transfer

function in (A3.6.7) (derived in the auxiliary lemma). Integrate
(A3.6.11) by parts to obtain

& z(t) = e(t) + u(t) f k(t - o)do - u(0) f k(t - o)do

“‘\LI\ (<o
M b\-\(\ﬂdla\m Fd"\- (‘>o PR

M(.&)-:"L(e) N ‘ft\&(’ (A‘S 6. \0>
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t

-& [ k(t - 0)do | i(r)dr (A3.6.12)
o (Il

Using the results of the auxiliary lemma

t
2(1) = ) + u()-u(0)g(t) - [g(t - T)i(r)dr  (A3.6.13)
0

Since g(_t) is e)fponentially decaying, u(0)g(¢) can be inctuded in (¢).
Also, using again the auxiliary lemma, together with lemma 3.6.1, and
then the assumption on #, it follows that

IA

r .
Waclly = W zcllp + el + — N tdl,

IA

Izl + Welly + = kil uelly + = ks (A3.6.14)

Since a is arbitrary, let it be sufficiently large that L ky<1. Conse-
quently, ?

Iell, + =k,
1 14
“ u!”p < —r“ Z,”p+ a
Ccl |z ll, + c2 (A3.6.15)
a
RS

Proof of Corollary 3.6.3
(a) From lemma 3.6.2.
(b) Since H is strictly proper, both y and y are bounded.

(c) We have tha‘t y = fl(u) and y = H(a). Using succesively lemma
3.6.1, the regularity of u, and lemma 3.6.2, it follows that for some con-
stants k,, .. ., ke

IA

Yl < kil dlly, + k2

IA

kall wll o + Ka

A

ksll vill o + ko (A3.6.16)

The proof can easily be extended to the vector case. O
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Proof of Lemma 3.6.4
Let
H(s) = ho+ H(5) (A3.6.17)

where H | is strictly proper (and stable). Let /4, be the impulse response
corresponding to H,. The output y(¢) is given by

[}

t
y(t) = e(t) + hou(t) + fh,(z -7 ul(r)dr (A3.6.18)
0

where €(¢) is due to the initial conditions. Inequality (3.6.9) follows, if
we define

L]

!
Yi(t) t= Lhol Bi(e) + [Ih(t = 7)| Bi(r)dr (A3.6.19)
0

and

!

[ + | hol Bo(t) + [} 1yt = 7)| Ba(r)dr (A3.6.20)
0

va(t) :

Since ¢ € Ly and A, € L, ﬂLoo, we also have that |¢] e Ly,
[y e LN L_ . Since 8,8, € L,, it follows that the last term of
(A3.6.19) and similarly the last term of (A3.6.20) belong to L, N LOo ,

and go to zero as [ — oo (see e.g., Desoer & Vidyasagar [1975], exercise
5, p. 242). The conclusions follow directly from this observation. 0O

Proof of Lemma 3.6.5

Let {A4,b,c",d] be a minimal realization of H, with 4 € R™*m,
b e R",ce R" and d € R. Let x: R, ->R"™, and yi:R,->R
such that

X = Ax + b(wT ¢)

yi = cTx (A3.6.21)
and W:R,—->R"*" y,: R, - R such that

W = AW + bwT
cTW¢ (A3.6.22)

]

Y2
Thus

AWTe) = yy+dwTe)  HWNé = y+ @dwe (A3.6.23)
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Since

dit(%) = Wo+Wé = AWo+bwTo+ W (A3.6.24)

it follows that
LW - d-woy)-w

Yi=y2 = cT(x-W¢g) (A3.6.25)

The result then follows since

HwT ¢)- HwT)¢ = yi=v2 = HB.(W¢) = H.(Hyw")é) (A3.6.26)
o

Proof of Theorem 3.7.3

The proof follows the steps of the proof of theorem 3.7.1 and is only
sketched here.

(@) Derive properties of the identifier that are independent of the bound-
edness of the regressor

The properties of the identifier are the standard properties obtained in
theorems 2.4.1-2.4.4

Wi owa) = lB(t).ll Wil + ) ‘
BeLynL,
vely, $elnL

A +1(t) 2 kpin >0 forallz >0 (A3.7.1)

- The inequality for a,, . () follows from the use of the projection in the

update law.

We also noted, in Section 3.3, that if 7 is bounded and A4 IS
bounded away from zero, then ¢ is also bounded, and the transformation
has bounded derivatives. The vector g of coefficients of the polynomial
¢ is also bounded. By definition of the transformation, 6(x*) = ¢*,
Therefore, ¢ e L, Ve LN L implies that ¢ e L., ¢ e
LyNL_. Also, we have that (/|| Amarllyy) < colt) < kyy / ki, for
allt 2 0.

(b) Express the system states and inputs in term of the control error
As in theorem 3.7.1.
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(¢) Relate the identifier error to the control error

We first establish an equality of ratios of polynomials, then we transform
it to an operator equality. Using a similar approach as in the comments
before the proof, we have that

ga-ga’ = a1 (N-¢)-gkya,

= _am+l(é—cu)+am+l()‘_6‘)*‘kpéﬁp

= _am+l(6_5')+(ain+lé‘_ké)ﬁp (A37-2)
Gb -Gb* = gGx- Amord = Nodyy - +qd
= “am+l(d"d*)+('am+ld "AOdArn+é3p)
= —am+l(6’2_‘2*)
m+ -~ aA’r ~ dA
N L N> +G-X —:‘]d (A3.7.3)
kp ky d, d,
Therefore
QA !d—é‘]+i{5—5‘]kpﬁp
9 O N
P ot i-d* =~ No dpi
= Amy) c,\ AC + dA ,\d P “(k am+l) 2 Ap Al
X No X No X od, X

k P 5 _ J* R

= D sl A=A p ey R (a3
X Xo X No Xo

where we divided by ):):0 to obtain proper stable transfer functions.
The polynomial X, is Hurwitz and ¢ is bounded, so that the operator
q7'5, /X is a bounded operator.

We now transform this polynomial equality into an operator equal-
ity as in the comments before the proof. Applying both sides of (A3.7.4)
tou

g7 T = T -y it L w + 5T Ly | asns)
0 0 Ao Ao

The right-hand side is very reminiscent of the signal z obtained in

the input error scheme. A filtered version of the signal A:I"Is(u)=r,,

appears, instead of r, with the error ¢y -c¢§. From proposition 3.3.1,
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with L = X, (cf. (3.3.17))

sy -15 1 -7
GM™'P—(u) = %(u)—%(ﬁ'»v) (A3.7.6)
A0 >\() }\0

% , 1t follows that

and since i = cor + 0

>‘0 A() )\0

The right-hand side of (A3.7.5) becomes, using (A3.7.7) followed by the
swapping lemma (and using the notation of the swapping lemma)

. P -
L) - CL'[—}-(cor)Jr%(MW)J (A3.7.7)
0

km | co-c | 1, - ¢ [ -
| Ta TN =@Tm+ 2157 Ly LGy,
Co 0 AO >\0 o )\O )\0

Co~ €5

I NP
= ((Co=¢0)r) = Ao [ A oelcor)
¢ | Ao ‘o

1 =7 ¢o -
+7—(¢Tw)—c—0A

3 e [Ron( "é | (A3.7.8)

On the other hand using again the swappi {
‘ , pping lemma, the left-h
side of (A3.7.5) becomes s ¢ fell-hand

TS0 (=T r S S /& ;
=Y = g" =0T y) - g7 S (S 0 7)) (A3.7.9)
)\0 AO
where the transfer functions A obs A ocs 5',1,, and S',C result from the appli-

cation of the swapping lemma. The output error is then equal :
t
(3.7.2), (A3.7.5), (A3.7. 8), (A3.7.9)) q o (using

Yo=VYm = —M[(Co*(:o)f‘i'(f) WJ
s
oo |k 1 Y
= TMAO *’:'A—((CO—C(;)’)+AL(¢TW)
m Co AO >‘O
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I~ 5 S |1 & TV
= —1-(-—— M X, [—qr*:— (WT¢) + qTSrc [S,b(WT)\l/]
m AO
. Co—CH
+ = Aac Aob(COr) 0 2
e ‘o
km N n - T
+ "C_Aoc Agp(Ww )¢ (A3.7.10)
0

(d) Establish the regularity of the signals

As in theorem 3.7.1.

(e) Stability Proof

M X, is a stable transfer function and since g is bounded, ¢7§,/ Xy is a

bounded operator. We showed that y/}, $, ¢o € L, so that, from
(A3.7.10) and part (a), an inequality such as (3.7.19) can be obtained.

As before w regular implies that 83— 0 as ¢ - 0. The boundedness of
all signals in the adaptive system then follows as in theorem 3.7.1. Simi-

larly, y,-y, € L, and tends to zero as ¢ —»oo. Since the relative
degree of the transfer function from u — W is the same as the relative
degree of P, M, and therefore L ~ !, the same result is true for # — Wi

Proof of Lemma 4.2.1

Define
!
w(t,x) = fd(r,x)e"“—')dT (A4.2.1)
0
and
1
wolt , x) = fd(f,x)df (A4.2.2)
0
From the assumptions
[ wolt +tg, x) = woltg, x)| < v(t)-t (A4.2.3)

forallz, 10> 0, x e By. Integrating (A4.2.1) by parts
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t
Wt,x) = wylt, x)-e fe“" “Dwo(r, x)dr (A4.2.4)
0
Using the fact that
t
€ ge“(’ welt, x)dr = wy(t, x) - wo(t, x)e™ ' (A4.2.5)

(A4.2.4) can be rewritten as

t
Wlt, X) = wo(r, x)e < + ¢ e ot x) - wo(r, x))de (A4.2.6)
0

and, using (A4.2.3) and the fact that wo(0,x) =0,
t

[we(t, x) < y(t)te ' + ¢ fe"("’)(t =7)y(t - 7)dr (A4.2.7)
0

Consequently,

zl . Q0 ’ ,
lew(t, x)| < ’gg%y[lee "t 47[%]7@-%' (A4.2.8)

Since, for some B, 1d(t, x)| <8, we also have that v (1) < 8. Note
that, for all 1’ > 0, t'e~! < - ',and =" < ¢, 5o that

|6W6([ x)‘ < sup [‘y [-ﬂ t’e"’ + s t’ -t
b u —
”5[0,\/(_] € 1'21\)/: v € re

Ve o
T g 1
+£~,[€’Te d‘r+[7[—:—lre dr (A4.2.9)

This, in turn, implies that

lew (r, x)| < ;9\/;+~y[L e typf L -Ve
7 >t v (1 +\/;)e
= (o) (A4.2.10)
From the assumption on 1, it follows that é(e) € K. From (Ad4.2.1)
v (t, x)
Y -d{t,x) = -ew (L, x) (A4.2.11)

so that the first part of the lemma is verified.
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If v(T) = a/T’, then the right-hand side of (A4.2.8) can be com-
puted explicitly

sup ad(t’) et = ad(l-r) """ < aéd (A4.2.12)
20

and, with I" denoting the standard gamma function,
Q
[ae@) redr = adTQ2-r) < ad (A4.2.13)
0

Defining £(¢) = 2a ¢, the second part of the lemma is verified. O

Proof of Lemma 4.2.2
Define w,(f,x) as in lemma 4.2.1. Consequently,

4

LLATL R fd(r,x)e“"")dr
ox ax |4
t
- [ [—‘?—d(r x)| e =gy (A4.2.14)
olex
Since 9d(t, x) is zero mean, and is bounded, lemma 4.2.1 can be
d

X
applied to ﬂ%-’—)-c—l, and inequality (4.2.6) of lemma 4.2.1 becomes ine-
X

ad(t, x)

is bounded,
ax

quality (4.2.10) of lemma 4.2.2. Note that since

and d(¢,0) = Oforall¢t =0, d(¢, x) is Lipschitz. '

Since d(¢, x) is zero mean, with convergence fgqctlon ¥(T)| x|,
the proof of lemma 4.2.1 can be extended, with an addmongl factor | x|.
This leads directly to (4.2.8) and (4.2.9) (although the function £(e) may
ad(t, x)

ox

be different from that obtained with , these functions can be

replaced by a single £(¢)). 0O

Proof of Lemma 4.2.3
The proof proceeds in two steps. o
(a) For e sufficiently small, and for ¢ fixed, the transformation is a
homeomorphism.

Apply lemma 4.2.2, and let ¢ such that £(e)<1. Let ¢ <.
Given z € By, the corresponding x such that
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X =z +ewl(t,z) (A4.2.15)

may not belong to B,. Similarly, given x e By, the solution z of

(A4.2.15) may not exist in By,. However, for any x,z satisfying
(A4.2.15), inequality (4.2.8) implies (4.2.16) and

(L-&()]z] < |x| < (1+£(e))z] (A4.2.16)
Define
o _ h _ B
h'(e) = min (h(1 £(e)), i@ | = h (1 -£()) (A4.2.17)
and note that 4(e)— /4 as e— 0.
We now show that
° for all ze By, there exists a unique x € B, such that
(A4.2.15) is satisfied,
. for all x e B,, there exists a unique ze B, such that

(A4.2.15) is satisfied.
In both cases, | x - z| < ¢(o)h.

The first part follows directly from (A4.2.15), (A4.2.16). The fact
that | x ~ z| < £(e)h also follows from (A4.2.15), (4.2.8) and implies that,
if a solution z exists to (A4.2.15), it must lie in the closed ball U of
radius £(e)4 around x. It can be checked, using (4.2.10), that the map-
ping F(z) = x - ew(?, z) is a contraction mapping in U, provided that
fo< 1, Consequently, F has a unique fixed point z in U. This solu-
tion is also a solution of (A4.2.15), and since it is unique in U, it is also
unique in B, (and actually in R"). For x e By, but outside By, there is
no guarantee that a solution z exists in By, but if it exists, it is again
unique in By, Consequently, the map x — z defined by (A4.2.15) is well
defined. From the smoothness of we(t, z) with respect to z, it follows
that the map is a homeomorphism.

(b) The transformation of variable leads to the differential equation
4.2.17)

Applying (A4.2.15) to the system (4.2.1)

aw, | . ow,
[[*—63‘;—].2 = ffav(z)‘f‘f[f(l,Z,O)—fav(z)~—%J

+e[f({,z+ew5,e)—f(t,z,e)]
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+e[f(t,z,e)—f(t,z,0)]

= ef(z) +ep'(t, x,2z,¢€) (A4.2.18)
where, using the assumptions, and the results of lemma 4.2.2
[D'(t, z, €)] < E()|z| + E(e)l(|z] + €ly] 2| (A4.2.19)

ow, .
For e < ¢, (4.2.10) implies that II + S has a bounded inverse for

allt =20,z € B,. Consequently, z satisfies the differential equation

-1
z = 1+f% [efav(z)+ep’(t,z,e)]
9z
= efafz) +ep(t, z, ¢ z(0) = Xxq (A4.2.20)
where
-1
W, oW,
p(t,z, ¢ = {1 “a—t] p'(l,z,e)—e;;fav(z)] (A4.2.21)
and
P2, 01 S gy [0+ €@n + ey + (0l ] 12
= ¥(]z] (A4.2.22)

forallt 20,e<¢,z € B,. 0O

Proof of Lemma 4.4.1 '
The proof is similar to the proof of lemma 4.2.3. We consider the
transformation of variable

X = z+ ew(t, z) (A4.4.1)

with € < ¢, such that &¢) < 1. (4.4.1) becomes

-1
z = [1“%‘ ¢ [fav(z)"" [f(t,z,O)—fav(Z)~—at—

+ [f(t,z+ew(,0)—f(t,z,0)]
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+ f(t,z+ew‘,y)—f(t,z+ewt,0)] ] (A4.4.2)
or

2 = efa()+epi(t,z,0+epat,z,p,0 z(0)=xg (Ad4.4.3)

where

1

Ptz 0] = |6, + &0 + 5011 | |2

[~ &)
= {0k, || (Ad.4.4)

and
P2t 2, ¥, 0) S-;ﬁzsﬁﬂy!:=kﬂyl (A4.4.5)

0

Proof of Theorem 4.4.2

The proof assumes that for all ¢ e [0,T/¢], the solutions x(¢), y(),
and z(¢) (to be defined) remain in Bj,. Since this is not guaranteed a
priori, the steps of the proof are only valid for as long as the condition is
verified. By assumption, x,,(/) e By, with A'<h. We will show that
by letting ¢ and A sufficiently small; we can let x(t) be arbitrarily close
to x,,(¢) and y(¢) arbitrarily small. It then follows, from a contradiction
argument, that x(¢), y(t) € B, forall 1 e [0,T/e], provided that € and
hq are sufficiently small.

Using lemma 4.4.1, we transform the original system (4.4.1), (4.4.2)
into the system (4.4.11), (4.4.2). A bound on the error [ Z(t) = xg(2)]
can be calculated by integrating the difference (4.4.11)~(4.4.4), and by
using (4.4.7) and (4.4.12)

t t
12() =Xl < el [|2(r) = xa(7)] dr + <&k, [|z(r)| dr
0 0

+eky [|y(r)] dr (A4.4.6)
0

Bound on | y(t)|

To obtain a bound on | ¥(2)|, we divide the interval [0,T/¢] in intervals
4,4 .1] of length AT (the last interval may be of smaller length, and
AT will be defined later). The differential equation for y is
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y = AX)y + eglt, x,p) (A4.4.7)
and is rewritten on the time interval [{;, ¢;, ;] as follows
y o= Ay +eglt,x,py) + Ay -Ay)y (A4.4.8)

where A, = A(x(1)), and A, = A(x(t;)), so that the solution y(¢), for
[ € [t,‘, ti+1]$ ngiVCn by

A=t -

!
) A 7)
W) = e vi+efe " g, x, yydr
14

!
+ [T U~ Ay ar (A4.4.9)
143
where y; = y(¢;). From the assumptions, it follows that
| A, — Al < kglX| (r-4) < ey +1;)h kA (A4.4.10)

and, using the uniform exponential stability assumption on A4{x)
YOI S miy ey B [(13+14) + (U + 1)k, AT ] (Ad.4.11)

Let the last term in (A4.4.11) be denoted by ek;, and use (A4.4.11) as a
recursion formula for y;, so that

i-1

lyil < [me"‘” ] i [vol + ekbj§0 [me'“r ] ’ (A4.4.12)
Choose AT sufficiently large that
me T < o212 o AT > %lnm (A4.4.13)
It follows that
S [me‘W ]j < 3030 [e‘“m ]j = T,oern _e.lum (A4.4.14)
/<0 i=

Combining (A4.4.12)-(A4.4.14) and using the assumption y, € By

fkb

-A/2
T T e ho + ek,

lyil < e 28712, 4 (A4.4.15)

Using this result in (A4.4.11), it follows that for all t € [¢;, ¢; 4]

- Ny -A - 1)
ly)| < me x"/2/106 ¢ ")+mekce + eky
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S mhoe M2 4 e(mk, + k) (A4.4.16)

Since the last inequality does not depend on i, it gives a bound on
|y()| foralls e [0, T/e].
Bound on z(t) - x,,(t)

We now return to (A4.4.6), and to the approximation error, using the
bound on | y(¢)] '

! !
12() = xaD)] < el [12() = xo0(7)] dr + €k, [har
0 0

4

+eky [ [mhoe-xf/zv+ 6(r;11<c+1<,,)] dr  (Ad.4.17)
0

so that, using the Bellman-Gronwall lemma (lemma 1.4.2)
[2(1) = xa(1)]

A
O, ~

&k + kamhoe™ 2 4 by, + k) | cet 0y

< (e + &) [kl h + fj“;n% + ky(mk, + kb)J e/:’T
= Ylear (A4.4.18)
and, using (4.4.10)
[ x(2) ~xo(2)] < (&) by (Ad4.4.19)
for some b7
Assumptions

We assumed in the proof that all signals remained in B;. By assump-
tion, x,,(t) € By, for some h'< h. Let hg, and er be sufficiently small
so that, for all € < e; <, we have that mhg + e(mk, + k,) < h (cf.
(A4.4.16)), and that v(©br <h-h' (cf. (4.4.27)). It follows, from a
simple contradiction argument, that the solutions x(¢), y(t) and z(¢)

remain in B, for all7 e [0, T/¢], so that all steps of the proof are valid,
and (A4.4.19) is in fact satisfied over the whole time interval. [0J
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Proof of Theorem 4.4.3

The proof relies on the converse theorem of Lyapunov for exponentially
stable systems (theorem 1.4.3), Under the hypotheses, there exists a
function v(x,,) : R"— IR, and strictly positive constants o, aj, a3, a4
such that, for all x,, € By,

o] Xg) ? s V(Xs) £ az Xl 2 (A4.4.20)
V(Xgy) < —eas| xgl? (A4.4.21)
(4.4.49)
av
< 4.4,22
a-xav ay l Xav| (A )

The derivative in (A4.4.21) is to be taken along the trajectories of the
averaged system (4.4.4).
We now study the stability of the original system (4.4.1), (4.4.2),

through the transformed system (4.4.11), (4.4.2), where x(z) is defined
in (4.4.9). Consider the following Lyapunov function

vi(z,p) = v(z)+—33~yTP(x(z))y (A4.4.23)
2

where P(x), p, are defined in the comments after the definition of uni-

o ,
form exponential stability of 4(x). Defining o'y = min(a;y, =2 D), 1t
2

follows that
odi(1z]2+ %) S vz, y) < ar(fz]2 + %) (Ad4.24)

The derivative of v, along the trajectories of (4.4.11)-(4.4.2) can be
bounded, using the foregoing inequalities

—ea3(z|2 +eb(kiag|z|? + ekyaq|z| |y

15 S

)
N qily|? + delyay|z| |y] + 2elyaz]y|?

for € <¢ (so that the transformation x—z is well defined and
| x| <2|z|). We now calculate bounds on the terms in (A4.4.25).

vi(z,y) <
|| 121 1917

(A4.4.25)
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Bound on | 9P/ ox |
Note that P(x) can be defined by
(o)
P(x) = l ed "1 Qe y, (A4.4.26)
so that
BP(X) _ ¢ a AT
o - g a_x; ed ) QeA(x)t
+ oA T(x)t A(x)t
e Q [0xi ettx ” dt (A4.4.27)
The partial derivatives in parentheses solve the differential equation
d {0 ion
4a 1. 9 9 4 04 (x
p? [ax, e = A(x) 01 e m’} + "_a)(T) e (A4.4,28)
with zero initial conditions, so that
9 4 ‘ 94 (x)
2 Ay o [ oA -7y A (X) T
o <1 ! e o AN gy (A4.4.29)

From the boundedness of a’; (x)
X,

i

, and from the exponential stability of
A{x), it follows that

4 A(x)t
I e | = ot

this implies that || P (x)/ ax [l is bounded by some

(A4.4.30)

With (A4.4.27),
k, 2 0.

Bound on || dx/dz| and | z]
On the other hand, using (4.4.9), (4.2.8) and (4.4.12)

152 11 < v <2

and  |2]" < eh(l, + Eeky + ky)

Using these results in (A4.4.25
ze R

(A4.4.31)
), and noting the fact that, for all y,
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dzl ¥l s 5 @]z + @81yl (A4.4.32)

it follows that

k
vi(z,y) < —6[03"5(6)1(1“4—61/3 22(14 —261/3130‘2] |z|?

k
- iz-q1—26140(2~62/3 224 -2é3 54,
P2
+26z—jkph lav+g(e)k,+k2} Lk
= =2eayal(e)]z]? - qe)|yl? (A4.4.33)

1 aj
a(e)=>»—— as
2 2 %]

Note that, with this definition, e~ 0, while

(€) > —
qgle)—» — 4.
D2 :

Let € < ¢ be sufficiently small that a(e)>0 and 2ea;a(e) < g(e).
Then

vi(z,y) < -2eale)vi(z, p) (A4.4.34)

so that the z, y system is exponentially stable with rate of convergence
ea(e) (v; being bounded above and below by the square of the norm of
the state). The same conclusion holds for the x, y system, given the
transformation (4.4.9), with (4.4.10). Also, for ¢, h sufficiently small, all
signals are actually guaranteed to remain in By so that all assumptions
are valid. 0O

Auxiliary Lemmas for Section 6.2

Lemma A6.2.1
Consider the least squares identification algorithm described by (6.2.8),
(6.2.9) with the sequence of resetting times {0, ¢,, #,,...}, that is

¢ = -Pwwl¢ (A6.2.1)

%(P“) = wwT r# (A6.2.2)

B NI P
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P UyY = kol 4 = 0,1y, 1ts,. .. (A6.2.3)
If w satisfies
liv
j wwldt 2 ayI  forall ¢ (A6.2.4)
l
Then
el s || 600
QAN [¢(0)] (A6.2.5)
Proof of Lemma A6.2.1
Note that for 1 #0, ¢, 15, . ..
dip-1,y _
dl(P ¢) =0 (A6.2.6)
Thus
Py e(t) = Pt y) oo ) (A6.2.7)
$o that
;) = koP(t7) ¢(t;_y) (A6.2.8)
and, with (A6.2.4)
ko
| o(t)] < Kot e, [o(ti_1)] (A6.2.9)

Recursion on (A6.2.9) yields (A6.2.5).

Comments
If @y =0, the lemma shows that ¢ (t;) is bounded. If «;>0 and the

sequence ¢; is infinite, ¢(;,)—>0 as i - 0. Further, if the intervals
li+1~1; are bounded, then ¢ (7;) - 0 exponentially. O

Lemma A6.2.2

Consider the following linear systems
2o = Azg + br (A6.2.10)

Z = (A+0A@)z + (b+Ab()r (A6.2.11)

with 4 stable and A4, Ab both bounded and converging to zero as
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! — Co.

I the input r is bounded

Then  given >0, there exists kK >0 (independent of ¢) and a T(e¢)
such that

| 2() - zo(t)] < ek forall =T (A6.2.12)

Proof of Lemma A6.2.2

From lemma 6.2.1, it follows that 4 + AA4(¢) is asymptotically stable and
that there exists 7' such that the state transition matrix of A + AA(t)

satisfies
o, )l < m(exp(- «(t -7))) (A6.2.13)

for some m, >0 and ¢ 27> T,. Using this estimate, it is easy to show
that z(¢) is bounded. Now, defining the error e(r) := z(t) — zo(t), we
have that

¢ = Ae+ Az + Abr (A6.2.14)

For T sufficiently large, A4 and Ab are arbitrarily small, so that ¢ may
be showed to satisfy (A6.2.12). O
Lemma A6.2.3 Solution of the Pole Placement Equation

Consider two coprime polynomials: d, monic of order n, and fi, monic
of order < n - 1. Let k, be a real number.

Then  given an arbitrary polynomial d,(s) of order 2n — 1, there exist
unique polynomials 74, and d, of order at most n - | so that

Ackyfiy, +d.d, = dy (A6.2.15)

Proof of Lemma A6.2.3

Since k, 7, and c?,, are coprime and of order #n - 1, n, respectively, there
exist polynomials #, ¥ of degree at most n, n - 1, respectively so that

Uk, iy +9d, = 1 (A6.2.16)

Thus, we see that
ddyk,h, +vdyd, = d

Further, we may modify (A6.2.17) to

(A6.2.17)
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(@dy - Gdy)kyity + (Fdy + Gkyiy)d, = dy  (A6.2.18)
for an arbitrary polynomial 4. Let
A 1= didy - Gd,
de = Vdy+ Gkyh, (A6.2.19)

Since &’p is of order n, we may choose § so that #, is of order < n - 1
(for instance, as the quotient obtained by dividing i c?d by c?,, ). Then, JC
is constrained to be of order < n - 1, since the other two polynomials in
(A6.2.18), that is Ak, i, and d,, are of order < 2n - 1.

It is useful to note that if

s

dy = dys™ '+ - 1+ 4,

dy = S"+B,s" 4 - 4 B
kyf, = aps" "'+ 4 a

Ao = aps" '+ - 4 a

-~

de = bys" '+ 4+ 0b (A6.2.20)

then the linear equation relating the coefficients of 7, c?c to those of c?d
is

[ a0 00 6 0 0 0]
IS 0 0 B 8 00
Qp-y Qp-3 * " a; 0 By_y Byy -0 " B O
Qp Oy * ay a; By, Bpoy 0 B By
0 a - - ay ay 1 Bn T B3 By
0 0 o a4 o3 0 1 e 64 ﬂ3
0 0 . 0ay 0 O L By

0 0 00 0 0 - -0 1
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[ a; ] [ d,
a d2
an_t dn—l
day dn
. = A6.2.21
b] dn+l ( 6 )
bz dn+2
by dan -1
| b,, | L d2n

(A6.2.21) is of the form A(#")6; = d where 6* is the nominal plant
parameter, and 6 the nominal controller parameter. [
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