CHAPTER 7

ADAPTIVE CONTROL OF A CLASS
OF NONLINEAR SYSTEMS

7.1 INTRODUCTION

In recent years there has been a great deal of interest in the use of state
feedback to exactly linearize the input-output behavior of nonlinear con-
trol systems, for example of the form

p
JxX)+ 2 gy

i=1
yio= hix).. oy = hy(x) (7.1.1)

In (7.1.1), xeR", ueR’, ye R” and f, g : R" > R". Also the 4,’s
are scalar valued functions from IR” to IR. The theory of linearization
by exact feedback was developed through the efforts of several res.earchj
ers, such as Singh and Rugh [1972], Freund [1975], Meyer & C%colam
[1980], Isidori, Krener, Gori-Giorgi & Monaco [1981] in the continuous
time case. Good surveys are available in Claude [1986], Isidori [1985,
1986] and Byrnes & Isidori [1984]. The discrete time case and sampled
data cases are more involved and are developed in Monaco &
Normand-Cyrot [1986]. A number of applications of these techniques
have been made. Their chief drawback however seems to be in the fact
that they rely on exact cancellation of nonlinear terms in order to get
linear input-output behavior. Consequently, if there are errors in the
model of the nonlinear terms, the cancellation is no longer exact and the
input-output behavior no longer linear. In this chapter, we suggest the
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use of parameter adaptive control to help make more robust the cancel-
lation of the nonlinear terms when the uncertainty in the nonlinear
terms is parametric. The results of this chapter are based on Sastry &
Isidori [1987].

The remainder of the chapter is organized as follows: we give a
brief review of linearization theory along with the concept of a
minimum phase nonlinear system in Section 7.2. We discuss the adap-
tive version of this control strategy in Section 7.3 along with its applica-
tion to the adaptive control of rigid robot manipulators, based on Craig,
Hsu & Sastry [1987]. In Section 7.4, we collect some suggestions for
future work.

7.2 LINEARIZING CONTROL FOR A CLASS OF NONLINEAR
SYSTEMS—A REVIEW

7.2.1 Basic Theory
SISO Case

A large class of nonlinear control systems can be made to have linear
input-output behavior through a choice of nonlinear state Seedback con-
trol law. Consider, at first, the single-input single-output system

S(x) + g(x)u
y = hx) (7.2.1)

with x € R”, f, g, 4 all smooth nonlinear functions. In this chapter, a
smooth  function will mean an infinitely differentiable function.
Differentiating y with respect to time, one obtains

X

. dh oh
y = af(x)w“ ag(x)u
= Leh(x) + Leh(x)u (7.2.2)

where Loh(x): R" - R and Leh(x): R"— R stand for the Lie deriva-
tives of h with respect to f, g respectively. If Loi(x) is bounded away
from zero for all x, the state feedback control law (of the form
U= alx)+8(x)v)

[
- u = L (=Lsh +v) (7.2.3)
yields the linear system (linear from the new input v to y)

y o=
The control law (7.2.3) has the effect of rendering (n - 1) of the states of
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(7.2.1) unobservable through appropriate choice of state feedback.

In the instance that Lgh(x) = 0 meaning Lgh(x) = 0 for all x,
one differentiates (7.2.2) further to get

= Lph(x) + (LgLh)(x)u (7.2.4)

In (7.2.4), L}h (x) stands for Ly(Lsh)(x) and LyLsh(x) = Lg(Lsh(x)).
As before, if L Lh(x) is bounded away from zero for all x, the control
law

1
“ S TR (= LFh(x)+v) (7.2.5)

linearizes the system (7.2.4) to yield
o=

More generally, if v is the smallest integer such that L, L}h = 0 for

i=0,..., y-2and L,L? " 'h is bounded away from zero, then the
control law

1

U = ————— (=L7h+v) (7.2.6)
Le L~ 'h
yields
yro=v
The procedure described above terminates at some finite v if the row
vectors {%(x), %th(x), Ce, %L}'“h(x)} are linearly indepen-

dent for all x.

Note that the theory is considerably more complicated and incom-
plete if L, L/~ 'h is not identically zero, but is equal to zero for some
values of x.

MIMO Case—Static State Feedback

For the multi-input multi-output case, we consider square systems (that
is systems with as many inputs as outputs) of the form

X

It

SO +gix)uy + - + gyx)u,
hi(x)

Y1
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Vo = hy(x) (7.2.7)

Here x e R”, u e IR?, y € IR? and f, &, hj, are assumed smooth. Now,
differentiate the j th output y; with respect to time to get

14
_).lj = L/’k} + E (Lg‘_hj)u,» (728)
i=1

In (7.2.8), note that if each of the (Lgh;)(x) = 0, then the inputs do
not appear in (7.2.8). Define v j to be the smallest integer such that at

least one of the inputs appears in ¥/, that is,
p
Vo= L b+ F Ly (L y)u, (7.2.9)
i=1
with at least one of the L, (Lf"‘lhj) # 0, for some x. Define the
D X p matrix 4(x) as
r

LglLle_lhl Lg,,Lfvl—lhl

Ax) = ‘ : (7.2.10)

_Lgl fyp_lhp o Lg,,Lfvp—]hp
Then, (7.2.9) may be written as
! LM h, U
= . + A(x) | - (7.2.11)
Vo' L hy i

If A (x) € R?*? is bounded away from singularity (meaning that 4 ~!(x)
exists for all x and has bounded norm), the state feedback control law
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Lf')‘l hl
u = -Ax)"! + Ax) 1y (7.2.12)
Lfyp hp
yields the linear closed loop system
e vy
= |- (7.2.13)
ypﬁ Vp

Note that the system of (7.2.13) is in addition decoupled. Thus, decou-
pling is achieved as a by-product of linearization. A happy consequence
of this is that a large number of SISO results are easily extended to this
class of MIMO systems. Thus, for example, once linearization has been
achieved, any further control objective such as model matching, pole
placement or tracking can be easily met. The feedback law (7.2.12) is
referred to as a static state feedback linearizing control law.

MIMO Case—Dynamic State Feedback

If A(x) as defined in (7.2.10) is singular, and the drift term in (7.2.11)
(i.e. the first term on the right-hand side) is not in the range of A4 (x),
linearization may still be achieved by using dynamic state feedback. To
keep the notation from proliferating, we review the methods in the case
when p = 2 (two inputs, two outputs). A(x) then has rank [ for all x.
Using elementary column operations, we may compress A(x) to one
column, i.e:,

apx) 0]

dyy(x) 0

Ax) T(x) = [

with T(x) e R?*? a nonsingular matrix. Now, defining the new inputs
w=T"1x)u, (7.2.11) reads

yn" Lfylhl app(x)
= + Wy (7.2.14)
p L h, dy(x)
Also, (7.2.7) now reads as
X = fx)+ &i(x)w; + gax)w, (7.2.15)
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where

[£1(x) §2(x)] = [g1(x) g20x)] T(x)
Differentiating (7.2.14), and using (7.2.15), we get

y!"ll*l _ Lf7'+1h| +LglLf"h,w1 +Lfd”wl +L£~,15“W12
vy + 1 - ; + 1 ~ ~-
y3? L hy + L; Li%hawy + Lpdyw + Lg dowi

. " .
apy ngLf hl +L£,2a”w, [WI}
d2| ngLf‘Yth + ngd 21W "2
The two large blocks in the equation can be condensed to yield:
yl‘y, +1
2«,2 +1

= Clx, w) + B(x, w;) [K;J (7.2.16)

Note the appearance of the control term w,. Specifying w, is
equivalent to the placement of an integrator before wy, that is to the
addition of dynamics to the controller. Now, note that if B(x, wy) is
bounded away from singularity, then the control law

Wil ~B " x, w)Clx, w )+ B (x, wy) | ! 7.2.17
W3 3 1 ) 1 s 1 Vs ( e )
yields the linearized system
yit! Vi
- = |, (7.2.18)
Y2

The control law (7.2.17) is a dynamic state feedback, linearizing, and
decoupling control law. If B(x, w,) is singular, the foregoing procedure
may be repeated on B(x, w;). The procedure ends in finitely many

steps if and only if the system is right invertible (for details, see Des-
cusse & Moog [1985)).

7.2.2  Minimum Phase Nonlinear Systems

The linearizing control law (7.2.3) when applied to the system (7.2.1)
results in a first order input output system. Consequently, (n - 1) of the
original n states are rendered unobservable by the state feedback. To
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see this more clearly, consider the linear case, i.e., f(x) = 4Ax, g(x) = b,
and A(x) = ¢"x. Then, the condition

Leh(x) #0 <> cTb #0
and the control law of (7.2.3) is

g o= — -cTAx +v) (7.2.19)

cTh

resulting in the closed loop system

beT

x:[z-——— b
c

AX + ——v
cTh

y = c'x (7.2.20)

From the fact that the control law (7.2.19) yields a transfer function of
~;— from v to y it follows that (n ~ 1) of the eigenvalues of the closed

loop matrix (1 —bc” /cTh)A are located at the zeros of the original Sys-
tem, and the last at the origin. Thus, the linearizing control laws may be
thought of as being the nonlinear counterpart of this specific pole place-
ment control law. The dynamics of the states rendered unobservable are
indeed the so-called zero-dynamics of the system (see (7.2.23)). Clearly,
in order to have internal stability (and boundedness of the states), it is
important to have the closed loop pole-zero cancellation be stable, i.e.
the system be minimum phase. This motivates the understanding and
definitions of minimum phas: nonlinear systems. We start with the
single-input single-output case.

7.2.2.1 The Single-Input Single-Output Case

The first definition to be made is that of relative degree (or pole-zero
excess).

Definition  Strong Relative Degree
The system (7.2.1) is said to have strong relative degree v if

Leh(x) = LgLih(x) = -+ = LeLf %h(x) = 0 forall x

and for all x, L,L/ - 'h(x) is bounded away from zero.
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Comments

a)  The system (7.2.1) is said to have strong relative degree v if the
output y needs to be differentiated v times before terms involving the
input appear.

b) In the instance that the system has strong relative degree v, it is

possible to verify that, for each x° e IR", there exists a neighborhood
U° of x° such that the mapping

T:U° - R"
defined as
Tyx) = zy, = h(x)
Tax) = z13 = Leh(x)
T,(x) = zy, = L7 'h(x) (7.2.21)
and T,,, ..., T, chosen such that
d
EE[Ti(x)]g(x) =0 for i=~y+1,. .. n

- is a diffeomorphism onto its image (see Isidori [1986]).

If we denote by z; € IR the vector (zyy, ..., zy,)" and by

z; € IR"™7 the vector (Tys1, ..., T,)7, it follows that the equations
(7.2.1) may be replaced by

)T

211 = 2y

,217_1 = zly

Z1y = fi1(z1,22) + 81(2), 27)u

Z; = ¥(zy, zy)
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Yy = zy (7.2.22)

In the equations above, f(z,, z;) represents LA h(x) and &1 (zy, 25)

represents LgLﬂ“'h(x) in the new coordinates. V¥,(zy, z;) represents
LyTi(x) fori =y +1,..., n Also note that the input does not
directly influence the z, states. The representation of the system (7.2.1)
through (7.2.22) is called a normal form.

If x =0 is an equilibrium point of the undriven system, that is,
J(0) = 0 and /#(0) = 0 (without loss of generality), then the dynamics

z; = ¥(0, z,) (7.2.23)

are referred to as the zero-dynamics. Note that the subset

Lo = {(x e U] h(x) = - = Ly~ hx) = 0)
can be made invariant by choosing
1 )
U = ———— V- f1(z),25) + v 7.2.24)
2z 20) Si(zy, z3) (

The dynamics of (7.2.23) are the dynamics on this subspace.

Definition  Minimum Phase

The nonlinear system (7.2.1) is said to be globally (locally) minimum
phase if the zero-dynamics are globally (locally) asymptotically stable.

Comments

a) This definition may be strengthened to exponentially stable, in
which case we call the system exponentially minimum phase.

b)  The previous analysis identifies the normal form (7.2.22) and the

zero-dynamics of (7.2.23) only locally around any point x° of RR”.
Recent work of Byrnes & Isidori [1988] has identified necessary and
sufficient conditions for the existence of a globally defined normal form,
They have shown that a global version of the notion of zero-dynamics is

that of a dynamical system evolving on the smooth manifold of IR”

Ly = {(x e R": h(x) = Leh(x) = -+ = L h(x) = 0)
and hereby defined the vector field

L7h(x)
LeLp hx)

Note that this is a vector field on Lo because [ (x) is tangent to Ly, If

Sx) = flx)- glx) x e Ly
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1%0 is_ connected ar}d the zero-dynamics are globally asymptotically stable
(i.e. if the system is globally minimum phase), then the normal forms of
(7.2.22) are globally defined if and only if the vector fields

§(x), ad7g(x), . . ., ad? " 'g(x)
are complete (i.e. have no finite escape time), where

g(x) = F
LgLﬂ“iz(x)g(X) S(x), asabove

while

_ g = of _
ad;g = == - ==
78 o) @) ax S(X)

;Isnizse shcr);jc.al]'ed’Lie bracket of [, g and ad[L 57 =ady. .. aa{;? iterated /
. 1S 1S in tum. guaranteed by requiring that the vector fields in

question be globally Lipschitz continuous, for example.
_ T.he utility of the definition of minimum phase zero-dynamics
arises in the context of tracking: if the control objective is for the out-

put y(l) to track a pre-specified reference trajectory y,,(¢), then the con-
trol input

Vo= + aY(ym _]—yly_l) RER al(ym‘y) (7225)

results in the following equation for the tracking error e := y - Vm

ed +aye) ! 4.4 ajey = 0 (7.2.26)

It is important to note that the control law of (7.2.25) is not imple-

mented by differentiating y repeatedly but rather as a szgze Jeedback law
since

y = th
j o= Lph
= Ly
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If @y, ..., a,are chosen so that s”+a,s” !+ + a; is a Hurwitz

; -1
polynomial, then it is easy to see that eq, €y, ..., e ~! go to zero as ¢

tends to co. Further, if y,, Y, . .., yal "' are boundeq, then y, y,_ e
yY~! are also bounded and so is z,. The following proposition
guarantees bounded tracking, that is tracking with bounded states.

Proposition 7.2.1 Bounded Tracking in Minimum Phase Nonlinear Sys-

tems .

If the zero-dynamics of the nonlinear system (7.2.1) as defined in
(7.2.23) are globally exponentially stable. Further, \If(zl_, Z7) in
(7.2.22) has continuous and bounded partial derivatives in
z1,z2and Yoy Yo - - ., 3~ ! are bounded

Then  the control law (7.2.24)-(7.2.25) results in bounded tracking,
that is, x € IR" is bounded and y(¢) converges to y,, (¢).

Proof of Proposition 7.2.1

From the foregoing discussion, it only remains to show that z; i?
bounded. We accomplish this by using the converse theorem o
Lyapunov of theorem 1.5.1 (as we did for theorem 5.3.1).

Since (7.2.23) is (globally) exponentially stable and ¥ has bounded
derivatives, there exists v,(z,) such that

al|22|2 < vy(z;) £ a2|22]2

d
TLw0,2) S -a3]z)?
d22
TN (7.227)
d22
By assumption, the control law (7.2.24)—(7.2.25) yields bounded z,, i.e.
[z,(t)] < k for all ¢ (7.2.28)
Using (7.2.27) for the system (7.2.22) yields
; v, 2, W -
vi(t) = ‘E‘I’(Zl,zz) S ~aglza|t 4+ iz, (¥(z1,22) -~ ¥(0, z3))
< ~as|zy]? + agkl |z, (7.2.29)

where / is the Lipschitz constant of \I/.(zl,.zz) in zy ( ¥ is globally
Lipschitz since it has bounded partial derivatives). It is now easy to see
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that
ki
vy <0 for |z3] = [a4 J
as

Using this along with the bounds in (7.2.27), it is easy to establish that
z;is bounded. O

Comments

a)  Proposition 7.2.1 is a global proposition. If the zero-dynamics
were only locally exponentially stable, the proposition would yield that

Z islbounded for small enough z,, that is, for small enough Yims Vs -
Ym .

b) The assumptions of proposition 7.2.1 call for a strong form of
stability—exponential stability. In fact, counter-examples to the proposi-
tion exist if the zero-dynamics are not exponentially stable—for example,
if some of the eigenvalues of 4 ¥(0, z3)/ dz, evaluated at z, = 0 lie on
the jw-axis.

¢)  However, the hypothesis of proposition 7.2.1 can be weakened con-
siderably without affecting the conclusion. In particular, it is sufficient
to ask only that the zero-dynamics of (7.2.23) converge asymptotically to
a bounded set (a form of exponential attractivity). To be concrete, the
exponential minimum phase hypothesis can be replaced by the condition

.y

27¥(0,2;) < -a;3]z,|®  for lzal 2 k& (7.2.30)

for some k (large). Condition (7.2.30) is similar to (7.2.27) for the
Lyapunov function | 23], except that it holds outside a ball of radius k.
It is then easy to verify that all trajectories of the undriven zero-
dynamics (7.2.23) eventually converge to a ball and that the proof of
proposition 7.2.1 can be repeated to yield bounded tracking. This
remark is especially useful in the adaptive context where the assumption

of minimum phase zero-dynamics may be replaced by exponential
attractivity.

7.2.2.2 The Multi-Input Multi-Output Case

Definitions of zero-dynamics for the square multi-input multi-output
case are more subtle, as pointed out in Isidori & Moog [1987]. There
are three different ways of defining them, depending on which definition
of the zeros of an LTI system one chooses to generalize

) the dynamics of the maximal controlled invariant manifold in the
kernel of the output map, or
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b) the output constrained dynamics (with output constrained to zero),
or
¢) the dynamics of the inverse system. o
It is also pointed out that the three different definitions cqmmde_ if
the nonlinear system can be decoupled by static state feedback, in which
case the definition parallels the development of the SI.SO case above.
More specifically, if 4(x) as defined in (7.2.10) is non-singular, then we
proceed as follows. Define

,Yl+...+ayp = m

and z; e R” by
2l = (hy, Lehy, oo L ey by L hy,
chy, oo LT hy)
Also, define z, e R" ™ by
zy = Ty(x), ..., Zyn-my = Tpom(x)

with z” = (z7, z1') representing a diffeomorphism of the state variables
x. In these coordinates, the equations (7.2.1) read as

2y = Zp2

Z1y, = [1(z1,22) + g1 (21, 22)u

Zig+) = Zi(y+2)

Zim = [p(21,22) + gp(z1,22)u
zy = V(z|,z3) + ®(z,,2;)u (7.2.31)

Vi = 2y
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Y2 = Zig, 4+

Yo = Zitm-y,+1 (7.2.32)

Above, f(z), z;) represents L/ hy(x) and g1(zy, z5) the first row of
A(x) in the (z), z;) coordinates. The zero-dynamics are defined as fol-
lows. Let 1 be a linearizing control law, for example

&1(zy, z3) Sz, z3)
w(z,zy) = - : : (7.2.33)
&p(z15 23) Jo(z15 25)
Then, if 0 € R” is an equilibrium point of the undriven system, that is
f0)=0and h,(0) = - = hp(0) = 0, the zero dynamics are the dynam-
ics of
Zy = ¥(0,z;)+ $(0, z)u(0, z;) (7.2.34)

It is verified in Isidori & Moog [1987] that the dynamics of (7.2.34) are
independent of the choice of linearizing feedback law. Proposition 7.2.1
and the remarks following it can be verified to hold with the hypothesis
being on the zero-dynamics of (7.2.34).

In the instance that the system (7.2.1) is not decouplable by static
state feedback, the definition of the zero-dynamics is considerably more
involved. We do not discuss it here since we will not use it.

723 Model Reference Control for Nonlinear Systems

The discussion thus far has been restricted to tracking control of linear-
izable nonlinear systems. For this class of systems the extension to
model reference adaptive control is easy: for the single-input single-

output case, consider y,,(t) to be the output of a linear time invariant
reference model with input r(t), specified by

Xm = AmXpy + by r

Ym = Ch X (7.2.35)

Then, provided that the relative degree of the reference model is greater
than or equal to the relative degree v of the nonlinear system, the
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control law (7.2.24)-(7.2.25) is easily modified to
v-1 . )
- — [—th L) a,~+1[y£n—y’] ]
LeLp 'h i=0
v
LoLp~ Th

[‘th + A X 4 Ch AL by

y-1

+ 0 [c,ﬁA,",,xm—L}h ] }
i=0
Note that the dimensions of the model play no role. This alsp relates to
the fact that the tracking error ey := y - y,, satisfies the equation
ed +aed l + - +ajey = 0 (7.2.36)
For the multi-input multi-output case, and the model of the form
X = ApX + By ¥
Ym = CnXp

with B,, € R™*?, C, e RP*"™, the class of models that can be
matched is that for which y,,; has relative degree v,, yu2 ha§ relative
degree v, and so on. As above, the model error ey := y — y,, satisfies

M(s)eo =0 (7.2.37)
where
. 1
M = dia -
© : S+ Ty
U S (7.2.38)
S-Y" +or 4+ ap|

This is not unlike the results of Section 6.3, where linear multivariable
plants are found to match their diagonal Hermite forms. .

In the adaptive control sequel to this section, we will consider the
tracking scenarios for compactness. Also, as we have noted above, the
dimensions of the reference model and its parameters do not play much

of a role except to generate V,p, Voo - - - v Vir-
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1.3 ADAPTIVE CONTROL OF LINEARIZABLE MINIMUM
PHASE SYSTEMS

In practical implementations of exactly linearizing control laws, the chief
drawback is that they are based on exact cancellation of nonlinear terms.
If there is any uncertainty in the knowledge of the nonlinear functions f
and g, the cancellation is not exact and the resulting input-output equa-
tion is not linear. We discuss the use of parameter adaptive control to
get asymptotically exact cancellation. At the outset, we will assume that

h is known exactly but we will discuss how to relax this assumption
later,

7.3.1 Single-Input Single-Output, Relative Degree One Case

Consider a nonlinear system of the form (7.2.1) with Lo (x) bounded
away from zero. Further, let Sf(x) and g(x) have the form

JS(x)

il
IIM =

oY 7,0) (7.3.0
1

i

=
~

gx) = X 6P gi(x) (1.3.2)

i=1
where 60" =1, nys 9}2)., J=1,..., n,are unknown parame-
ters and f;(x), g;(x) are known functions. At time t, our estimates of
the functions f and g are

ny

Selx) = 260(¢) fi(x) (7.3.3)
i=1

g(x) = 2 6P(t)g(x) (7.3.4)
j=1

Here the subscript e stands for estimate and 6(z), 6%(t) stand for the

estimates of the parameters §{!)", 8§2)' respectively at time /. Conse-
quently, the linearizing control law (7.2.3) is replaced by

1
u— = m ["(th)e + V] (735)

with (Lh),, (Lgh), representing the estimates of Lsh, Lyh respectively
based on (7.3.3), (7.3.4), i.e.,
ny

(Lyh)e = 2 6M0()Lsh (7.3.6)

i=1
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"
(Lgh)e = 25 6(0)Lyh (1.3.7)

j=1
; (1" 2"
If we define §* € R"' " " to be the nominal parameter vector (6, 62),

g(z)e R™™" the parameter estimate, and ¢ = 6 - 6" the parameter
error, then using (7.3.5) in (7.2.2) yields, after some calculation

yo= v g w4 @y (7.3.8)
with
Ly h
whe R™ 1= - | (7.39)
Ly h
and
Lgh
! | LAy 7.3.10)
we R™ := W (
Ly h

The control law for tracking is

vo= Yyt a(Yy =)
and yields the following error equation relatinrg the tracking error
T L @7N\T
€0 := Y — ¥, to the parameter error ¢’ = (¢ ¢@")

ép+aey = ¢'w (7.3.11)

where w e R"'"" is defined to be the concatenation of w,, w,. Equa-
tion (7.3.11) may be written
1
S+ a

which is of the form of the SPR error equation encountered in Chapter
2. The following theorem may now be stated.

ey = (67 w)

Theorem 7.3.1 Adaptive Tracking

Consider an exponentially minimum phase, nqnlinegr system of the
form (7.2.1), with the assumptions on f, g as given in (7.3.3), (7.3.4).
Define the control law
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- - 7.3.1
(Lgh)p (th)e + Yy t+ a(ym y) ( 3 2)
If (Lgh), as defined in (7.3.7) is bounded away from zero and y,,

is bounded.
Then  the gradient type parameter update law

¢ = ~éow (7.3.13)

yields bounded y(t), asymptotically converging to y,,(¢).
Further, all state variables of (7.2.1) are bounded.

Proof of Theorem 7.3.1

The Lyapunov function v(ey, ¢) = 1% e} +%¢Te is decreasing along the

trajectories of (7.3.11), (7.3.13), with v (eg, ¢) = - ael < 0. Therefore,
o and ¢ are bounded, and €g€ L,. To establish that o is uniformly
continuous (to use Barbalat’s lemma—lemma 1.2.1), or alternately that
éo is bounded, we need w—a continuous function of x (since (Lyh), is
oounded away from zero)—to be bounded. Now note that given a
bounded ey, y,, bounded implies y bounded. From this, and the
exponentially minimum phase assumption (proposition 7.2.1), it follows
that x is bounded. Hence w is bounded and e, is uniformly continuous,
and so0 eq tends to zero as ¢ —» co. O

Comments

a) The preceding theorem guarantees that €p converges to zero as
! - co. Nothing whatsoever is guaranteed about parameter conver-
gence. It is, however, easy to see that both ey, ¢ converge exponentially
to zero if w is persistently exciting, i.e. if there exist ay, ay, § > 0 such
that
lo+6
ay] > jwwfdz > a7
o
Unfortunately, the condition (7.3.14) is usually impossible to verify

explicitly ahead of time, since w is a complicated nonlinear function of
X, .

(7.3.14)

b)  One other popular way of dealing with parametric uncertainty is to
replace the control law in (7.3.12) by the “sliding mode” control law

1 .
Lhy, (7 LrPe + 9w+ kosgn (3, -9))  (1.3.15)
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The error equation (7.3.11) is then replaced by
e+ ksgne = d(1) (7.3.16)

where d(t) is a mismatch term (depending on the difference between
Lgh and (Lgh),, Lyh and (Lsh),,...). This may be bounded using
bounds on f;, g; and the ¢;’s above. It is then possible to see that if
k> sx%p |d(t)|, the error e goes to zero, in fact in finite time. This phi-

losophy is not at odds with adaptation as discussed in theorem 7.3.1. In
fact, it could be used quite gainfully when the parameter error ¢(¢) is
small. However, if ¢ (¢) is large, the gain k& needs to be large, resulting in
unacceptable chatter, large control activity and other undesirable
behavior.

¢)  An hypothesis of theorem 7.3.1 is that (Lgh). be bounded away
from zero for all x. Since (Lgh), as defined by (7.3.7) may indeed go
through zero, even if the ‘true’ Lgh is bounded away from zero, auxiliary
techniques need to be used to guarantee that (L;h), is bounded away
from zero. One popular technique is the projection technique, in which
the parameters 6{2(r), . . ., 62 (¢) are kept in a certain parameter range

which guarantees that (Lgh), is bounded away from zero, say by e (by
modifying the update law (7.3.13) as discussed in Chapter 2 and Chapter
3).

7.3.2 Extensions to Higher Relative Degree SISO Systems

We first consider the extensions of the results of the previous section to
SISO systems with relative degree v, that is, Lsh = LeLeh = -+
= LeLp "*h =0 with L,L7 ~'h bounded away from zero. The non-
adaptive linearizing control law is then of the form

U = —— (<L h+v) (7.3.17)
LeLf~'h
If f and g are not completely known but of the form (7.3.1), (7.3.2), we
need to replace L7 & and L,L~'h by their estimates. We define these
as follows
(LPh)e i= Lih (7.3.18)

(LeLf " 'h)e = LyLp 'h (7.3.19)

Note that for vy = 2, (7.3.18), (7.3.19) are not linear in the unknown
parameters 0;. For example,

It
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n n,
L) = 3 3 Ly (Ly h)sMgsh (7.3.20)
i=1j=1
and
ny nm
(LeLrh) = 3 3 Lg (Ly, )o@ 6" (7.3.21)
i=1j=1
and so on,

The development of the preceding section can easily be repeated if
we define each of the parameter products to be a new parameter, in

which case the ("¢ and 6260 of (7.3.20) and (7.3.21) are parameters,
k . .

Let ® € IR“ be the k-(large!) dimensional vector of parameters ¢(", ¢@

l 2 3 bl

692, 6060, .. .. Thus, for example, if v = 3, © contains 6", 842,

600D, g g1, 656, oM g\ o)

For the purpose of tracki
control law to be implemented s ° cling, the

Vo= ) +ay(y,’,,"~y"‘)+~--+a,(ym_y)

where y, j are obtained as State feedback terms using y = Leh(x)
y = L}h(x), and so on. In the absence of precise information about
Lsh, L}h, ..., the tracking law to be implemented is

Ve = yr o+ ay[y,’,,'l—(Lf“h)e] oot a(ym-y)  (7.3.22)
The adaptive control law then is

U =

~(Lph
Lol Th), (= (Lfh)e +v,) (7.3.23)

This yields the error equation (with & :
parameter error)

= 0(¢) - © representing the
-1

e + a, el + 4+ age

LeLy='h

(LgLy~'h),

(Lh - (LY h),)

L]

Lih + (=(LYh)e +v,) - v
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(_(L]h)e + ve) +
(LgL}Y~'h),
= dTw, + dTw, (7.3.24)
The two terms on the right-hand side arise, respectively, from the
mismatch between the ideal and actual linearizing law, and the
mismatch between the ideal tracking control v and the actual tracking

control v,. For definiteness, consider the case that v =2 and
ny = ny = 1. Then, with @7 = [gV), ¢@ g1 gD gD ] we get

Vo = ¥

+ | LgLy~"h = (LgLy~'h)e)

(‘(szh)e+ve)

wl = =0 0 Lh LyLsh TR

it

wl = —laLih 0 0 0] (7.3.25)

Note that w; and w; can be added to get a regressor w, It is of interest
to note that 6 cannot be explicitly identified in this case, since the
terms in the regressor multiplying it are zero. Also note that w is a func-
tion of x and also 6(¢).

Consider now the form (7.3.24) of the error equation. For the pur-
poses of adaptation, we could use an error of the form

ey = Bed ™+ + 8 e (7.3.26)
with the transfer function

ﬁ737—1 +o+ By

s7+a‘ys"l‘l +...+al

(7.3.27)

strictly positive real. Indeed, if such a signal e, were measurable, the
basic tracking theorem would follow easily. The difficulty with con-

structing the signal in (7.3.26) is that ég,é,, ..., ey~ ' are not measur-
able since

éO. = th - ym

€o = LPh - jn, (7.3.28)

and so on, with L}h not explicitly available since they may not be
known functions of x. An exception is a large class of electromechanical
systems of which the robot menipulator equations are a special case, see
Section 7.3.3 below. In such systems, 8y, ..., 8, may be chosen so that
the transfer function in (7.3.27) is strictly positive real and the adaptive
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law of the previous section with e, as given by (7.3.26) yields the desired
conclusion. When the L}h ’s are not available, the following approach
may be used.

Adaptive Control Using an Augmented Error
Motivated by the adaptive schemes of Chapter 3, we define the polyno-

mial
L(s) i= s"+as" 4+ a (7.3.29)

so that equation (7.3.24) may be written as

eo = L7 s)(@Tw) (7.3.30)

where we used the hybrid notation of previous chapters and dropped the
exponentially decaying initial condition terms. Define the augmented
error

e, = ep+ [@TI:'l(s)(w)—ﬁ"(s)(@rw)] (7.3.31)
Using the fact that constants commute with £. - I(s), we get

e, = eg+ [cpfi-'(s)(w)-i-‘(s)(q>Tw)] (7.3.32)

Note that e, in (7.3.31) can be obtained from available signals, unlike
(7.3.32) which is used for the analysis. Using (7.3.30) in (7.3.32), we
have that
ey = 7L " Y(s)(w) (7.3.33)
Equation (7.3.33) is a linear error equation. For convenience, we will
denote
£ = L7(s)(w) (7.3.34)

From the error equation (7.3.33), several parameter update laws are
immediately suggested. For example, the normalized gradient type algo-
rithm:

: : -eé
0 =P = ——— 7.3.35
‘ 1+ e7¢ ( )
As in the stability proofs of Chapter 3, we will use the following notation
(@) Bisa generic L, N Loo function which goes to zero as ¢ — co.

(b) v isa genericL,N Loo function.
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(©) | z||, refers to the norm sup | z(r)|, that is the truncated L _ norm.
T

From the results of Chapter 2, a number of properties of ®, e; follow
immediately, with no assumptions on the boundedness of &.

Proposition 7.3.2 Properties of the Identifier
Consider the error equation

e, = ®T¢ (7.3.36)
with the update law
. _eig (7.3.37)
ATy

Then @ e L, d e L, NnL, and
[eTE@)] < v+l

forsome vy € L, N Loo.

for all ¢ (7.3.38)

Proof of Proposition 7.3.2: See theorem 2.4.2.

We are now ready to state and prove the main theorem.

Theorem 7.3.3 Basic Tracking Theorem for SISO Systems with Relative
Degree Greater than 1 .
Consider the control law of (7.3.22)-(7.3.23) applied to an expone;ntlal_ly
minimum phase nonlinear system with parameter uncertainty as given in
(7.3.1)-(7.3.2).

If Yo Yoms + -
(LgL*~'h), is bounded away from zero,
/.8, h, Lfh, L,L¥h are Lipschitz continuous functions,
and w(x, 6) has bounded derivatives in x, 4,

Then  the parameter update law

. ¥»7 ~! are bounded,

. el (1.3.39)
L=y

with ¢ = L~ 1(s)(w) yields bounded tracking, i.e., y -y, as
t - oo and x is bounded.
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Remark: The proof is similar to the proof of theorem 3.7.1 in the linear
case. Although the scheme is based on the output error eg, the choice
L~ = M makes it identical to the input error scheme.

Proof of Theorem 7.3.3
(a) Bounds on the Error Augmentation

Using the swapping lemma (lemma 3.6.5), we have (with notation bor-
rowed from the lemma)

"L Nw)-L '@ Tw) = -[, Ly 'wT)d) (7.3.40)
Using the fact that & € L, and L, is stable (since L "' is), we get
(LW < v w], + v (7.3.41)

Using lemma 3.6.4 and the fact that I:C" is strictly proper and stable,
we get

[ @TL ") =L @Tw) < B wll, + (7.3.42)
(b) Regularity of w,®Tw
The differential equation for zZy=0y,..., 7" HTis
l Ym
2 = M(s)| - @Tw)+ | - (7.3.43)
s“’." y”;r'—l

Since ¢ is bounded and Yms -« ., ¥,y ! are bounded by hypothesis, and
sk M (s) are all proper stable transfer functions, we have that

Izl < kifwll, + & (7.3.44)
Using (7.3.44) in the exponentially minimum phase zero-dynamics

Z; = ¥(z,z;) (7.3.45)

we get

Tzl < k| w, + k (7.3.46)

Equations similar to (7.3.44), (7.3.46) can also be obtained for z,, z,
since the transfer functions A7 oo, SYTIM are strictly proper. Com-

bining (7.3.44) and (7.3.46), and noting that x is a diffeomorphism of
Z},2; we see that
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W xll, < k| wll, + & (7.3.47)
and I xll, < kllw||, +k (7.3.48)

Using the hypotheses that || dw/dx|| and || dw/ 36| are bounded and
(7.3.48) we get

Wil < kfwl, +k (7.3.49)

Thus w is regular = § = L~ 'wis regular by corollary 3.6.3. For 7w,
note that

4 oTyw)y = 7w+ oW (7.3.50)

dt
Using (7.3.49), and &, d e Loo we get

| Lo, < kil wil + & (7351

But from (7.3.43) and (7.3.45) we get that

Hxll, < kil ®Tw||, + k (7.3.52)
so that

Nwll, < k|| ®Tw|, + k (7.3.53)

Combining (7.3.53) with (7.3.51) yields the regularity of &7 w.
(c) Stability Proof

From the regularity of £, ®7w, one can establish that 7 ¢/1 + || £, has
bounded derivative and so is uniformly continuous. By theorem 2.4.6,

e = [@TE(] < B +|IEN) (7.3.54)
where 8 - Q as ¢t — oo.
Now

eo = ey +@TL ' w)-L "(@7w) (1.3.55)
Using (7.3.42),

leol < fei| +Blwl, +8
Using (7.3.53), we have
leo] < |ey| + B8] ®Tw|, +8 (7.3.56)
Applying the BOBI lemma (lemma 3.6.2) to
eo = L7'(s)(@Tw)
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along with the established regularity of 7w, we get

19Twll, < klleoll, + k (7.3.57)
Using (7.3.57) in (7.3.56)
leol < |ey] + Bl egll, + 8 (7.3.58)
and using (7.3.54) for e,, we find
leol < Blleoll, + 8 + 81|l (7.3.59)
Since ¢ is related to w by stable filtering
el < kffwl, +k (7.3.60)

Using the estimate (7.3.53), followed by (7.3.57) in (7.3.59) yields
leol < Blleoll, + 8 (7.3.61)

Since 80 as { — oo, we see from (7.3.61) that ey goes to zero as

! =00 (as in proof of theorem 3.7.1, using lemma 3.6.6). This in turn
can be easily verified to yield bounded w,x. 0O

Comments
2)  The parameter update law (7.3.35) appears not to take into account

prior parameter information such as the initial existence of 6}, 65, 07 67
and so on. It is important, however, to note that the best estimate of

67 87 in the transient period may not be 6,(¢) 6,(¢). Since parameter con-
vergence is not guaranteed in the proof of theorem 7.3.3, it may also not

be a good idea to constrain the estimate of 6; 6 to be close to 6;0;. Note
however, that the number of parameters increases very rapidly with .

b) In several problems, it turns out that Lih and L,L7"'h depend
linearly on some unknown parameters. It is then clear that the develop-
ment of the previous theorem can be carried through.

¢)  Thus far, we have only assumed parameter uncertainty in f and g,
but not in A. It is not hard to see that if 4 depends linearly on unk-
nown parameters, then we can mimic the aforementioned procedure
quite easily.

d) Parameter convergence can be guaranteed in theorem 7.3.3 above
if w is persistently exciting in the usual sense (cf (7.3.14)).
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7.3.3. Adaptive Control of MIMO Systems Decouplable by Static State
Feedback

From the preceding discussion, it is easy to see how the linearizing,
decoupling static state feedback control law for minimum, phase, square
systems can be made adaptive—by replacing the control law of (7.2.12)
by

Lf'Yl hl

u = AN - : + v (7.3.62)

I Lfyp hp

e

Recall that if A(x) is invertible, then the linearizing control law is also

the decoupling control law. Thus, if 4(x) and the L} h;’s depend
linearly on certain unknown parameters, the schemes of the previous
sections (those of Section 7.3.1 if v{ =v; =---=v, =1, and those of
Section 7.3.2 in other cases) can be readily adapted. The details are
more notationally cumbersome than insightful. Therefore, we choose
not to discuss them here. Instead, we will illustrate our theory on an
important class of such systems which partially motivated the present
work (see Craig, Hsu, and Sastry [1987])—the adaptive control of rigid
link robot manipulators. We sketch only a few of the details of the
application relevant to our present context, the interested reader is
referred to the paper referenced previously.

If g e R” represents the joint angles of a rigid link robot manipula-
tor, its dynamics may be described by an equation of the form

M(g)g + C(g,9) = u (7.3.63)

In (7.3.63), M(q) e R"™" is the positive definite inertia matrix, C(q, q)
represent the Coriolis, gravity and friction terms, and u € IR” represents
the control input to the joint motors (torques). In applications, M(q)

and C(q, ¢) are not known exactly, but fortunately they depend linearly
on unknown parameters such as payloads, frictional coefficients, ..., 50
that

M(q) = 21) 6" Mi(q) (7.3.64)

i=l
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ny
Clg, 9) = 2}1 8 Ci(q, ) (7.3.65)
Writing the equation (7.3.63) in state space form with x7 = (47 g7

and y = g, we see that the system is d i
. , ecouplable in the sense of Secti
7.2 with v, =+=+v,=2 and ron

Ax) = M~ (g) (7.3.66)
[L;'h,
= -M~Yg)C(q, ¢) (7.3.67)
L}"h,,J
while the decoupling control law is given by
u = Clgq, g) + M(q)v (7.3.68)

Note that the quantities in equation (7.3.66) depend on a complicated

gashion on the unknown parameters 6", @ while the equation (7.3.68)
epends on them linearly. For the sake of tracking, v is chosen to be

Vo= b+ @G~ 4) + ay(gy, - q) (7.3.69)

and the overall control law (7.3.68). (7 i
puted torgue scheme. ( ), (7.3.69) is referred to as the com-

To make the scheme adaptive, the law (7.3.68) is replaced by

u = Clq,q) + My(q)v (7.3.70)
Let ey = g,, - g so that
. . ,zl
Cot+aréotareq = M;Uq)Y Cig, g) ot
i=1
ny
tMIN DT MG eP (1371
- . i=1
This may be abbreviated as
éO + a2é0 t ajey = We (7.3.72)

nx .
where W e R"*"1+7) ¢ o function of ¢, 4

»and g, and @ is "
ter error vector. The parameter update law / the parame
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b = -WTe, (7.3.73)

where e, = €9+ B;ep is chosen so that (s + 8,)/(s* + ass + a) is strictly
positive real. This can be shown to yield bounded tracking. The error
augmentation of Section 7.3.2 is not necessary in this application since
both y,y are available as states so that the L;A;’s do not have to be
estimated. Note that the system is minimum phase—there are in fact no
zero dynamics at all. It is, however, unfortunate that the signal W is a

function of ¢ —but this is caused by the form of the equations and may
be avoided by modifying the scheme as in the input error approach (cf.
Hsu et al [1987]). As in other examples, it is important to keep M.(q)
from becoming singular, using prior parameter bounds.

7.4 CONCLUSIONS

We have presented some initial results on the use of parameter adaptive
control for obtaining asymptotically exact cancellation in linearizing con-
trol laws. We considered the class of continuous time systems decoupl-
able by static state feedback. The extension to continuous time systems
not decouplable by static state feedback is not as obvious for two rea-
sons

a)  The different matrices involved in the development of the control
laws in this case, namely, T(x), C(x, w,), B(x, w;) depend in extremely
complicated fashion on the unknown parameters.
b)  While the *“‘true” A(x) may have rank less than p, its estimate
A.(x) during the course of adaptation may well be full rank, in which
case the procedure of Section 7.2.1 cannot be followed.

The discrete time and sampled data case are also not obvious for
similar reasons:
a)  The non-adaptive theory, as discussed in Monaco, Normand-Cyrot
& Stornelli [1986] is fairly complicated since

Vw1 = h oo (SO) + glxi)uk) (7.4.1)

is not linear in u; in the discrete time case and a formal series for (7.4.1)
in u; needs to be obtained (and inverted!) for the linearization. Conse-
quently the parametric dependence of the control law is complex.

b)  The notions of zero-dynamics are not as yet completely developed.
Further, even in the linear case, the zeros of a sampled system can be
outside the unit disc even when the continuous time system is minimum
phase and the sampling is fast enough (Astrom, Hagander & Sternby
[1984])).
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Thus, the present chapter is iny a first step in the development of a
comprehensive theory of adaptive control for linearizable system:s.



