CHAPTER 4

PARAMETER CONVERGENCE
USING AVERAGING TECHNIQUES

4.0 INTRODUCTION
Averaging is a method of analysis of differential equations of the form
X = ef(t, x) 4.0.1)

and relates properties of the solutions of system (4.0.1) to properties of
the solutions of the so-called averaged system

xav = efav(xav) (402)
where
1 to+ T
v = lim —
Fan(x) Jim tjo fr,x)dr (4.0.3)

assuming that the limit exists and that the parameter ¢ is sufficiently
small. The method was proposed originally by Bogoliuboff & Mitropol-
skii [1961], developed subsequently by Volosov [1962], Sethna [1973],
Balachandra & Sethna [1975] and Hale [1980]; and stated in a geometric
form in Arnold [1982] and Guckenheimer & Holmes [1983].

Averaging methods were introduced for the stability analysis of
deterministic adaptive systems in the work of Astrom [1983], Astrom
[1984], Riedle & Kokotovic [1985] and [1986], Mareels et al [1986], and
Anderson et al [1986]. We also find early informal use of averaging in
Astrom & Wittenmark [1973], and, in a stochastic context, in Ljung &
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Soderstrom [1983] (the ODE approach).

Averaging is very valuable to assess the stability of adaptive sys-
tems in the presence of unmodeled dynamics and to understand mechan-
isms of instability. However, it is not only useful in stability problems,
but in general as an approximation method, allowing one to replace a
system of nonautonomous (time varying) differential equations by an
autonomous (time invariant) system. This aspect was emphasized in Fu,
Bodson, & Sastry [1986], Bodson et a/ [1986], and theorems were
derived for one-time scale and two-time scale systems such as those aris-
ing in identification and control. These results are reviewed here,
together with their application to the adaptive systems described in pre-
vious chapters. Our recommendation to the reader not familiar with
these results is to derive the simpler versions of the theorems for linear
periodic systems. In the following section, we present examples of
averaging analysis which will help to understand the motivation of the
methods discussed in this chapter.

4.1 EXAMPLES OF AVERAGING ANALYSIS

One-Time Scale Averaging
Consider the linear nonautonomous differential equation

X = —esin %) x x(0) = x, 4.1.1)

where x is a scalar. This equation is a special case of the parameter
error equation encountered in Chapter 2

$ = - gw(t) wl(t) ¢ #(0) = ¢o (4.1.2)
and corresponds to the identification of a single constant #* from meas-
urements of

y(t) = 6" sin (2) 4.1.3)

using a gradient update law. The general solution of a first order linear
differential equation of the form

X = a(t)x x(0) = xg (4.1.4)
is known analytically, and is given by

- t

{ a(r) dr

x(t) = e X0 (4.1.5)

In particular, the solution of (4.1.1) i$ simply
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¢ [ sin¥r) dr —ef(d - L cos@nyyar
x(t) = e l Xg=¢€ ‘[2 2 X0
- "zl' + +sin @)
= e Xo (4.1.6)
Note that when we replaced sin’(r) by 1 -l—cos (27) in (4.1.6), we

i . . 2 2
separated the integrand into its average and periodic part. Indeed, for

all 1y, x

1 o+ 7T 1
lim — sin(r)x dr = —x 4.1.7
Jim 7] 2 @17

Therefore, the averaged system defined by (4.0.2)~(4.0.3) is now given by

xav = - ';— Xay xav(O) = X (418)

The solution of the averaged system is

Xn(t) = e Xo 4.1.9)

Let us now compare the solutions of the original system (4.1.6) and
of the averaged system (4.1.9). The difference between the solutions, at
a fixed ¢

! € .
€ = — sin(2t)
| X(0) - x0(0)] = e ?let

- 1] (4.1.10)
- I%Sin Q)| as e — 0 4.1.11)

In other words, the solutions are arbitrarily close as ¢ - 0, so that we
may approximate the original system by the averaged system. Also, both
systems are exponentially stable (and if we were to change the sign in the
differential equation, both would be unstable). As is now shown, the
convergence rates are also identical.

Recall that the convergence rate of an exponentially stable system
is the constant « such that the solutions satisfy

| x(2)] < me 7| x(t)] (4.1.12)

for all x(¢p), to = 0. A graphical representation may be obtained by
plotting In(] x(¢)| ), noting that
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In(| x(t)| 3 < In(m?| x(to)| ?) - 2a(t - to) (4.1.13)

Therefore, the graph of In(] x(7)| 2) is bounded by a straight line of
slope -2 a. In the above example, the original and the averaged system
have identical convergence rate a = —;—
In this chapter, we will prove theorems stating similar results for
more general systems. Then, the analytic solution of the original system
is not available, and averaging becomes useful. The method of proof is
completely different, but the results are essentially the same: closeness
of the solutions, and closeness of the convergence rates as e — 0. We
devote the rest of this section to show how the averaged system may be
calculated in more complex cases, using frequency-domain expressions.
c .
One-Time Sale Averaging—Multiple Frequencies
Consider the system

X = —ewi(t)x (4.1.14)
where x € IR, and w contains multiple frequencies
n
w(t) = ) agsin (wet + k) (4.1.15)
k=1

To define the averaged system, we need to calculate the average

to+ T
AVG (WX(0) = lim — [ wia)dr (4.1.16)
T - o0 T 1o
Expanding w? will give us a sum of product of sin’s at the frequencies
wg. However, a product of two sinusoids at different frequencies has
zero average, so that

n a2
AVG (wX1)) = I 7" (4.1.17)
k=1
and the averaged system is
n d2
) S = —e| D | xa (4.1.18)
k=1 2

The averaged system is exponentially stable as soon as w contains at
least one sinusoid. Note also that the expression (4.1.18) is independent
of the phases ¢y.
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Two-Time Scale Averaging
Averaging may also be applied to systems of the form

x(t) = —ew(t)y@) (4.1.19)
p@i)y = —ay@)+ b w(t)x(t) (4.1.20)
where x, y € R, a > 0. In short, (4.1.20) is denoted
b -
y = T2 (wx) = M(wx) (4.1.21)

where M is a stable transfer function. (4.1.19) becomes

X = —ewMWwx) (4.1.22)

Equa?ions (4.1.19)-(4.1.20) were encountered in model reference
xfientlﬁcation with x replaced by the parameter error ¢, ¢ by the adapta-
tion gain g, and y by the identifier error ¢;.

' When ¢ — 0, x(¢) varies slowly when compared to y(¢), and the
time scales of their variations become separated. x(¢) is called the slow
state, y(t) the fast state and the system (4.1.19)~(4.1.20) a two-time scale

system. In the limit as ¢ = 0, x(¢) may be considered fro in (4
or (4.1.21), so that zen in (4.1.20)

Mwx) = MWw)x (4.1.23)

jrhe result of the averaging theory is that (4.1.22) may indeed be approx-
imated by

X = —€ AVG(W M(W)) X5 (4.1.24)

o Again, a frequency domain expression brings more interesting
insight. Let w contain multiple sinusoids

w(t) = kzl a, sin (wg t) (4.1.25)

so that
M(w) = kzl ag | Mjwg)| sin (wg ! + ¢x) (4.1.26)

where
¢ = arg(M (jy)) (4.1.27)

’Ijhe p_roduct wM (w) may be expanded as the sum of products of
sinusoids. Further, sin(wif + ¢x) = sin(wgt) cos(dr) + cos(wyt)
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sin(¢x). Now, products of sinusoids at different frequencies have zero
average, as do products of sin’s with cos’s of any frequency. Therefore

n 2
AVG [ w M(W)] kE %k— | M (wi)| cos (¢x)

i

n a]% R
= — Re | M (J 4.1.28
3 5 Re [ Gan] (4.1.28)

Using (4.1.28), a sufficient condition for the stability of the averaged sys-
tem (4.1.24) is that

Re M (jw) > 0 for all w > 0 (4.1.29)

The condition is the familiar SPR condition obtained for the stability of
the original system in the context of model reference identification. The
averaging analysis brings this condition in evidence directly in the fre-
quency domain. 1t is also evident that this condition is necessary, if one
does not restrict the frequency content of the signal w(t). Otherwise, it
is sufficient that the w’s be concentrated in frequencies where

Re M(jw) >0, so that the sum in (4.1.28) is positive.

Vector Case

In identification, we encountered (4.1.2), where ¢ was a vector. The
solution (4.1.5) does not extend to the vector case, but the frequency
domain analysis does, as will be shown in Section 4.3. We illustrate the
procedure with the simple example of the identification of a first order
system (cf. Section 2.0).

The regressor vector is given by

I I O N N 4
w = [yp] [PM] (4.1.30)
. C
where P = k, /(s + ay). As before, we let the input r be periodic
n
r(t) = 2 re sin(w?) (4.1.31)
k=1
so that the ave{aged system is given by (the gain g plays the role of ¢)
‘j’av = -gAVG (w WT) bay

) AVG(r7r) - AVG(r P(r))
= ~& | AvG( B(r)) AVGE() ()]
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. 1 Re P (juy)
= - e s s 4.1.32
§ 27 [RePGun | Plog 2| o 41
{ a, k,

2

nop2 wf + a?
= _ = bav (4.1.33
27 | oK & “ )

| Wk +af wf+a}

The matrix above is symmetric and it may be checked to be positive
semi-definite. Further, it is positive definite for all w; # 0. Taking a

Lyapunov function v = ¢, ¢, shows that the averaged system is
exponentially stable as long as the input contains at least one sinusoid of
Sfrequency w # 0. Thus, we directly recover a frequency-domain result
obtained earlier for the original system through a much longer and
laborious path.

Nonlinear Averaging

Analyzing adaptive control schemes using averaging is trickier because
the schemes are usually nonlinear. This is the motivation for the deriva-
tion of nonlinear averaging theorems in this chapter. Note that it is pos-
sible to linearize the system around some nominal trajectory, or around
the equilibrium. However, averaging allows us to approximate a nonau-
tonomous system by an autonomous system, independently of the linear-
ity or nonlinearity of the equations. Indeed, we will show that it is pos-
sible to keep the nonlinearity of the adaptive systems, and even obtain
frequency domain results. The analysis is therefore not restricted to a
neighborhood of some trajectory or equilibrium.

As an example, we consider the output error model reference adap-
tive control scheme for a first order system (cf. Section 3.0, with
kp = km =Cy = 1)

Vo = —@pyp+u
Vm = —QuyYm + 7T (4.1.34)
where a,, > 0, and a, is unknown. The adaptive controller is defined by
u =r+doy,
dy = -gegy, (4.1.35)

where g > 0 is the adaptation gain. The output error and the parameter
error are given by
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ey = Yp = Vm
¢ = do-dy = do- (am —a,)  (4.1.36)
The adaptive system is completely described by
ég = —(am - @) eo + Ym¢
6 = —geo(eo+ Ym) (4.1.37)
where '
N - (4.1.38)
Ym = T an (r)

When g is small (g takes the place of ¢ in the averaging analysis ?,
¢ varies slowly compared t0 7, Vm and eg. The averagec'i system 1S
defined by calculating AVG (eq(eo + Ym)), assuming that ¢ is fixed. In
that case

1

€ = m(ym) ¢
= l [ 1 (r)] ¢ (4.1.39)
S+am-—-¢ | s+ am
and
e+ Vm = —S—Jf_—ﬁ—:—g(ym) O+ Vm
= ;‘E%,%(ym) = ;;71;—_—50) (4.1.40)

Note that s + a,, — ¢ is the closed-loop polynomial, that 'is the polyno—
mial giving the closed-loop pole for ¢ fixed. Assume again that r is of
the form

n
ro= X re sin(wet) (4.1.41)
k=1

and it follows that

AVG [ eoleo + ym) ] ¢ fixed

1 Im 4 (4.1.42)
ot + (@ — 9 of + an

n rf
"2 7
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so that the averaged system is given by

~ &org 1 G
bay = -8 2 7 Day (4'143)
k=1 wi + (@ - d’av)z wi + ar%x
The averaged system is a scalar nonlinear system. Indeed, averaging did
not alter the nonlinearity of the original system, only its time variation.
Note that the averaged system is of the form

qgav = —a(¢av) dav (4144)

where a(¢,,) is a nonlinear function of ¢,,. However, for all # > 0,
there exists a > 0 such that

a(pg) =2 a>0 forall | ¢, | < A (4.1.45)

as long as r contains at least one sinusoid (including at w = 0). By tak-

ing a Lyapunov function v = ¢2,, it is easy to see that (4.1.43) is
exponentially stable in By, with rate of convergence «. Since 4 is arbi-
trary, the system is not only locally exponentially stable, but also
exponentially stable in any closed-ball. However, it is not globally

exponentially stable, because « is not bounded below as 4 — co.

Again, we recovered a result and a frequency domain analysis,
obtained for the original system through a very different path. An
advantage of the averaging analysis is to give us an expression (4.1.43)
which may be used to predict parameter convergence quantitatively
from frequency domain conditions.

‘ The .analysis of this section may be extended to the general
identification and adaptive control schemes discussed in Chapter 2 and

Chapter 3. We first present the averaging theory that supports the
frequency-domain analysis.

4.2 AVERAGING THEORY-ONE-TIME SCALE
In this section, we consider differential equations of the form

X = ef(t,x, € x(0) = xp (4.2.1)

where x € R”, t 20, O<e < ¢, and f is piecewise continuous with
respect to . We will concentrate our attention on the behavior of the
solutions in some closed ball B, of radius 4, centered at the origin.

For small ¢, the variation of x with time is slow, as compared to
the rate of time variation of f. The method of averaging relies on the

assumption of the existence of the mean value of f(¢, x, 0) defined by
the limit
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1 to+ T

fax) = lim — [ f(, x,00dr (4.2.2)
T—»m T 10

assuming that the limit exists uniformly in ¢¢ and x. This is formulated
more precisely in the following definition.

Definition Mean Value of a Function, Convergence Function

The function f(¢, x, 0) is said to have mean value f,,(x) if there exists a
continuous function y(T): R, —-IR,, strictly decreasing, such that

¥y(T)—>0as T — oo and

o+ T

% [ fGx, 0dr - futx)| < v(T) (42.3)

foralltg= 0,7 =20, x € By.
The function v (T) is called the convergence function.

Note that the function f(z, x, 0) has mean value f,,(x) if and only
if the function

d(t,x) = f(t,x,0)-fa(x) (4.2.4)

has zero mean value.

It is common, in the literature on averaging, to assume that the
function f(¢, x, €) is periodic in ¢, or almost periodic in . Then, the
existence of the mean value is guaranteed, without further assumption
(Hale [1980], theorem 6, p. 344). Here, we do not make the assumption
of (almost) periodicity, but consider instead the assumption of the
existence of the mean value as the starting point of our analysis.

Note that if the function d(z, x) is periodic in ¢ and is bounded,
then the integral of the function d(¢, x) is also a bounded function of
time. This is equivalent to saying that there exists a convergence func-
tion v(T) = a/ T (i.e., of the order of 1/ T) such that (4.2.3) is satisfied.
On the other hand, if the function d(¢, x) is bounded, and is not
required to be periodic but almost periodic, then the integral of the func-
tion d(¢, x) need not be a bounded function of time, even if its mean
value is zero (Hale [1980], p. 346). The function v (T') is bounded (by
the same bound as d(t, x)) and converges to zero as 7 - 0o, but the
convergence function need not be bounded by a/T as T — oo (it may
be of order 1/V/T for example). In general, a zero mean function need
not have a bounded integral, although the converse is true. In this book,
we do not make the distinction between the periodic and the almost
periodic case, but we do distinguish the bounded integral case from the



168 Parameter Convergence Using Averaging Chapter 4

general case and indicate the importance of the function v (7) in the
subsequent developments.

System (4.2.1) will be called the original system and, assuming the
existence of the mean value for the original system, the averaged system
is defined to be

Xoy = efa(Xay) Xa(0) = Xxo (4.2.5)

Note that the averaged system is autonomous and, for 7 fixed and e
varying, the solutions over intervals [0, T/e] are identical, modulo a
simple time scaling by e.

We address the following two questions:

(a) the closeness of the response of the original and averaged sys-
tems on intervals [0, T /e],

(b) the relationships between the stability properties of the two sys-
tems.

To compare the solutions of the original and of the averaged system, it
is convenient to transform the original system in such a way that it
becomes a perturbed version of the averaged system. An important
lemma that leads to this result is attributed to Bogoliuboff & Mitropol-
skii [1961], p. 450 and Hale [1980], lemma 4, p. 346. We state a gen-
eralized version of this lemma.

Lemma 4.2.1 Approximate Integral of a Zero Mean Function

If d(,x): R, x B,—»IR" is a bounded function, piecewise con-
tinuous with respect to ¢, and has zero mean value with conver-
gence function v (7T)

Then  there exists £(¢) € K and a function w,(¢, x): R, x B, - R"
such that

| ewe(t, x)| < &) (4.2.6)

ow(t, x)
ot
forall t = 0, x € By. Moreover, w,(0, x) = 0, for all x € Bj.
If, moreover, y(T)=a/T" forsomea =0,r € (0, 1]
Then  the function £(e) can be chosen to be 2a¢’.
Proof of Lemma 4.2.1 in Appendix.

—dit,x)| < £ 4.2.7)
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Comments
The construction of the function w, (¢, x) in the proof is identical to that
in Bogoliuboff & Mitropolskii [1961], but the proof of (4.2.6), (4.2.7) is
different and leads to the relationship between the convergence function
~(T) and the function £(e).

The main point of lemma 4.2.1 is that, aithough the exact integral
of d(t,x) may be an unbounded function of time, there exists a
bounded function w, (¢, x), whose first partial derivative with respect to
¢ is arbitrarily close to d(f, x). Although the bound on w, (z, x) may
increase as e— 0, it increases slower than £(e)/e, as indicated by (4.2.6).

It is necessary to obtain a function w,(¢, x), as in lemma 4.2.1, that
has some additional smoothness properties. A useful lemma is given by
Hale ([1980]}, lemma 5, p. 349). At the price of additional assumptions
on the function d(¢, x), the following lemma leads to stronger conclu-
sions that will be useful in the sequel.

Lemma 4.2.2 Smooth Approximate Integral of a Zero Mean Function

If d(t, x): R, x B, —»IR" is piecewise continuous with respect to
¢, has bounded and continuous first partial derivatives with
respect to x and d(¢, 0) = 0, for all £ = 0. Moreover, d(t, x)
has zero mean value, with convergence function v (7T)| x| and

od(t, x) has zero mean value, with convergence function v (T')

ax
Then  there exists £(¢) € K and a function w,(¢, x) : R, X By - R",
such that
[ew (t, x)| < &(9]x] (4.2.8)
1282 46, 0| < g0l (4.2.9)
Ifwl < &9 (4.2.10)
ox

forallz = 0, x e Bj. Moreover, w,(0, x) = 0, forall x e Bj.
If, moreover, ~(T)=a/T"forsomea 20,7 € o, 1],
Then the function £ () can be chosen to be 2ae’.
Proof of Lemma 4.2.2 in Appendix.
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Comments

The difference between this lemma and lemma 4.2.1 is in the condition
on the partial derivative of w, (¢, x) with respect to x in (4.2.10) and the
dependence on | x| in (4.2.8), (4.2.9).

Note that if the original system is linear, i.e.
X = ed(t)x x(0) = xo (4.2.11)

for some A(¢) : R, —IR"*", then the main assumption of lemma 4.2.2
is that there exists A,, such that A () - 4,, has zero mean value.
The following assumptions will now be in effect.

Assumptions
For some 7 >0, >0
(A1) x =0 is an equilibrium point of system (4.2.1), that is,
f(t,0,0) =0 for all £ =0. f(¢, x, ¢ is Lipschitz in x, that is,
for some /; = 0
| f(t, x1, € = fit, %2, 9 < [i|x;-x)] (4.2.12)
forallt 20, x;,x3 € By, ¢ < ¢
(A2) f(t, x, € is Lipschitz in ¢, linearly in x, that is, for some /; > 0
S, x, ) = flt,x,&)| < blx| e -« (4.2.13)
forallt 20,x € By, €, & < ¢
(A3)  f.(0) = 0 and f,,(x) is Lipschitz in x, that is, for some /;, 2 0
|fav(x1) - fav(xz)l < lav‘xl "x2| (4-2-14)
for all xy, x, € By.
(A4) the function d(¢, x) = f(¢, x, 0) — f,,(x) satisfies the conditions
of lemma 4.2.2.

Lemma 4.2.3  Perturbation Formulation of Averaging

If the original system (4.2.1) and the averaged system (4.2.5)
satisfy assumptions (A1)-(A4)

Then  there exist functions w,(f, x), £(¢) as in lemma 4.2.2 and ¢, >0
such that the transformation

X = z+ew(t,2) (4.2.15)
is a homeomorphism in B, for all ¢ < ¢; and

[x-z| < §£(d]z] (4.2.16)
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Under the transformation, system (4.2.1) becomes

2 = efg(z) +ept, 2, € 2(0) = xo (4.2.17)
where p(¢, z, ¢) satisfies ‘
|p(t,z, &) < ¥(9]z] (4.2.18)

for some y(¢) € K. Further, ¥ (e) is of the order of e+ £(e).
Proof of Lemma 4.2.3 in Appendix.

Comments

a) A similar lemma can be found in Hale [1980] (lemma 3.2, p. 192).
Inequality (4.2.18) is a Lipschitz type of condition on p(t, z, ¢), which is
not found in Hale [1980] and results from the stronger conditions and
conclusions of lemma 4.2.2.

b) Lemma 4.2.3 is fundamental to the theory of averaging presented
hereafter. It separates the error in the approximation of the original sys-
tem by the averaged system (x —X,) into two components: x —z and
z - Xxg4. The first component results from a pointwise (in time) transfor-
mation of variable. This component is guaranteed to be small by ine-
quality (4.2.16). For e sufficiently small (e < ¢), the transformation
z—» x is invertible and as ¢— 0, it tends to the identity transformation.
The second component is due to the perturbation term p(t, z, €. Ine-
quality (4.2.18) guarantees that this perturbation is small as ¢— 0.

¢) At this point, we can relate the convergence of the function v(T) to
the order of the two components of the error x — X, in the approxima-
tion of the original system by the averaged system. The relationship
between the functions v(T) and £(¢) was indicated in lemma 4.2.1.
Lemma 4.2.3 relates the function £(e) to the error due to the averaging.
If d(¢, x) has a bounded integral (i.c., y(7)~1/ T), then both x - z and

"p(t, z, € are of the order of ¢ with respect to the main term f,,(z). It

may indeed be useful to the reader to check the lemma in the linear
periodic case. Then, the transformation (4.2.15) may be replaced by

t

x(t) = z(t) + ¢ t[(A () - Ag)dr | z(t)

and (e), £(¢) are of the order of e If d(t, x) has zero mean but
unbounded integral, the perturbation terms go to zero as ¢— 0, but pos-
sibly more slowly than linearly (as Ve for example). The proof of lemma
4.2.1 provides a direct relationship between the order of the convergence
to the mean value and the order of the error terms.
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We now focus attention on the approximation of the original sys-
tem by the averaged system. Consider first the following assumption,

(A5)  xg is sufficiently small so that, for fixed T and some h'<h,
xqv(t) € By for all t € [0, T/e] (this is possible, using the
Lipschitz assumption (A3) and proposition 1.4.1).

Theorem 4.2.4 Basic Averaging Theorem

If the original system (4.2.1) and the averaged system (4.2.5)
satisfy assumptions (A1)-(A5)

Then  there exists ¥ () as in lemma 4.2.3 such that, given T = 0
[x(1) - xu(t)] < ¥(br (4.2.19)
for some by =2 0, ey > 0, and forallt € [0, T/e] and € < er.

Proof of Theorem 4.2.4
We apply the transformation of lemma 4.2.3, so that

[x-z| < E(]z] < We)|z| (4.2.20)
for ¢ < ¢;. On the other hand, we have that
d
L @-xa) = ¢ [fald) = fali)] +ept 2,0 @221)

z(0) -~ xa(0) = 0

forallt € [0, T/el, xzy € By, h'<h.
We will now show that, on this time interval, and for as long as

X,z € By, the errors (z -Xx,) and (x - x,;) can be made arbitrarily
small by reducing e. Integrating (4.2.21)

1]

t

|z(2) - xav(t)l = elav! | z(7) - Xay(7)] dr + 5‘//(6)J’|Z(T)| dr (4.2.22)
0

Using the Bellman-Gronwall lemma (lemma 1.4.2)

t
2(6) = xa(D)] S ew(d [|2()] e
0
el T 1
< Y(oh [e_l_‘_]
= V9ar (4.2.23)

Combining (4.2.20), (4.2.23)
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< x@)-z@)] +2() - xa(0)]

S YO xa(@)] + (L +¥ ()] 2(1) = xa(2)]

< Y +(1 +y¥(e))ar)

Y ()br (4.2.24)

IX(Z) _-xav(t)‘

By assumption, |x,(f)] S h'<h. Let er (with 0<er <¢) such
that y (ey)br <h - h’. It follows, from a simple contradiction argument,
that x(¢) € By, and that the estimate in (4.2.24) is valid for all
t € [0, T/e], whenevere < er. 0O

Comments

Theorem 4.2.4 establishes that the trajectories of the original system and
of the averaged system are arbitrarily close on intervals [0, T'/¢], when e
is sufficiently small. The error is of the order of y¥(¢), and the order is
related to the order of convergence of v(T). If d(¢, x) has a bounded
integral (i.e., v (T)~ 1/T), then the error is of the order of .

It is important to remember that, although the intervals [0, T'/¢]
are unbounded, theorem 4.2.4 does not state that

[x(t) - Xxa(t)] < ¥(e)b (4.2.25)

for all £ =0 and some b. Consequently, theorem 4.2.4 does not allow us
to relate the stability of the original and of the averaged system. This
relationship is investigated in theorem 4.2.5.

Theorem 4.2.5 Exponential Stability Theorem

If the original system (4.2.1) and the averaged system (4.2.5)
satisfy assumptions (A1)~(AS), the function f,,(x) has continu-
ous and bounded first partial derivatives in x, and x = 0 is an
exponentially stable equilibrium point of the averaged system

Then  the equilibrium point x = 0 of the original system is exponen-
tially stable for e sufficiently small.

Proof of Theorem 4.2.5

The proof relies on the converse theorem of Lyapunov for exponentially
stable systems (theorem 1.4.3). Under the hypotheses, there exists a

function v(x,) : R” - IR, and strictly positive constants a, a;, a3, oy
such that, for all x;, € By,

“llxavP < v(xy) < a2|xav|2 (4.2.26)



174 Parameter Convergence Using Averaging Chapter 4
il(xav)l < - eas|Xp|? (4.2.27)
(4.2.5)
dv
. | < agl x| (4.2.28)

The derivative in (4.2.27) is to be taken along the trajectories of the
averaged system (4.2.5).

The function v is now used to study the stability of the perturbed
§ystem (4.2.17), where z(x) is defined by (4.2.15). Considering v(z),
inequalities (4.2.26) and (4.2.28) are still verified, with z replacing x,,.
The derivative of v(z) along the trajectories of (4.2.17) is given by

| =]+ |2 (et 2,
(4.2.17) (4.2.9) 0z (ep(t, 2, 9) (4.2.29)
and, using previous inequalities (including those from lemma 4.2.3)
i@ = -]zl 2)?
(4.2.17)
a3-y(ea
< - [—az—“] v(z) (4.2.30)

for all € < ¢. Let ¢’ be such that a3~y (e’ )ay>0, and define ¢; = min
(6] N 62'). Denote

© = a3~ y(eay
ale) = —-———-——~2a2 (4.2.31)
Consequently, (4.2.30) implies that
v(z) < v(z(tg))e 22O ) (4.2.32)
and
« 1
2 —eale)(t -
lz(t)] < a_.] 2| z(tg)] e ) (4.2.33)

Since a(e)>0 for all ¢ < ¢, system (4.2.17) is exponentially stable
Using (4.2.16), it follows that ’ '

1-§(e) |

for a}l t 2120, e <¢, and x(tp) sufficiently small that all signals
remain in B,. In other words, the original system is exponentially
stable, with rate of convergence (at least) ea(e). 0O

1
Ix(0) < L& [ﬂl 2| x(tg)] e OU -0 (4.2.34)

Section 4.2 Averaging Theory—One-Time Scale 175

Comments

a) Theorem 4.2.5 is a local exponential stability result. The original sys-
tem will be globally exponentially stable if the averaged system is glo-
bally exponentially stable, and provided that all assumptions are valid
globally.

b) The proof of theorem 4.2.5 gives a useful bound on the rate of con-
vergence of the original system. As e tends to zero, ea(e) tends to
¢/2 a3/ ay, which is the bound on the rate of convergence of the aver-
aged system that one would obtain using (4.2.26)-(4.2.27). In other
words, the proof provides a bound on the rate of convergence, and this
bound gets arbitrarily close to the corresponding bound for the averaged
system, provided that e is sufficiently small. This is a useful conclusion
because it is in general very difficult to obtain a guaranteed rate of con-
vergence for the original, nonautonomous system. The proof assumes
the existence of a Lyapunov function satisfying (4.2.26)-(4.2.28), but
does not depend on the specific function chosen. Since the averaged sys-
tem is autonomous, it is usually easier to find such a function for it than
for the original system, and any such function will provide a bound on
the rate of convergence of the original system for e sufficiently small.

¢) The conclusion of theorem 4.2.5 is quite different from the conclu-
sion of theorem 4.2.4. Since both x and x,, go to zero exponentially
with ¢, the error x - x,, also goes to zero exponentially with ¢. Yet
theorem 4.2.5 does not relate the bound on the error to . It is possible,
however, to combine theorem 4.2.4 and theorem 4.2.5 to obtain a uni-
form approximation result, with an estimate similar to (4.2.25).

4.3 APPLICATION TO IDENTIFICATION
To apply the averaging theory to the identifier described in Chapter 2,

we will study the case when g = ¢>0 and the update law is given by (cf.
(2.4.1))

é(t) = -ge)w) #(0) = (4.3.1)
The evolution of the parameter error is described by
o) = -gw(t)wT()e(t) ¢(0) = ¢o (4.3.2)

In theorem 2.5.1, we found that system (4.3.2) is exponentially
stable, provided-that w is persistently exciting, i.e., there exist constants
ay, a, 6>0, such that

to+8 s
arl 2 [ wwl(ndr 2 a1 forall £=0  (4.3.3)

)
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?n .the other hand, the averaging theory presented above leads us to the
imit
1 o+ T
R0) := lim — [ w@wT(t+r)dr e R™" (43.4)
T~ T
oo o

where we used the notation of Section 1.6 for the autocovariance of w
evalu.ated at 0. Recall that R,(¢) may be expressed as the inverse
Fourier transform of the positive spectral measure S, (dw)

1 % .
R,(t) = - j &S (dw) (4.3.5)
- Q0

. Further, w is the output of a proper stable transfer function I:Iw,
given by (cf. (2.2.16)-(2.2.17))

A (sI-A)"'b
Hy(s) = [(sz— A)ih, ﬁ*(s)] e R¥(s) (4.3.6)

Therefore, if the input r is stationary, then w is also stationary. Its spec-
trum is related to the spectrum of r through

Sy(dw) = Hu(jo) HI(jo) S, (dw) (4.3.7)
and, using (4.3.5) and (4.3.7), we have that

oo
RuO) = 5 [ Haljo) B ju) S{d) (4.3.8)
- Q0

Since S,(dw) is an even function of w, R,(0) is also given by
R = L T AT
W0 = - [ Re|Hy,(jo) Hi(jo) | Side)
~ Q0

It was shown in Section 2.7 (proposition 2.7.1) that when w is station-
ary, w is persistently exciting (PE) if and only if R,(0) is positive
definite. It followed (proposition 2.7.2) that this is true if the support of
S, (dw) is greater than or equal to 2n points (the dimension of w = the
number of unknown parameters = 2n). Note that a DC component in
r(t) contributes one point to the support of S, (dw), while a sinusoidal
component contributes two points (at +w and - w).

o With these definitions, the averaged system corresponding to (4.3.2)
is simply
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d;av = —ng(O) bav d)av(o) = ¢o (439)
This system is particularly easy to study, since it is linear.

Convergence Analysis

When w is persistently exciting, R,(0) is a positive definite matrix. A
natural Lyapunov function for (4.3.9) is

V(¢av) = _;'id’avl 2= ';‘¢Zv¢av ) (4310)
and

-8 xmin (Rw(o)) I ¢av l 2 < - v(‘bav) < -g A max (Rw(o)) | ay l 2 (43 1 1)

where Apin and Apa are, respectively, the minimum and maximum
eigenvalues of R,(0). Thus, the rate of exponential convergence of the
averaged system is at least g Apin (Ru(0)) and at most g A max (RW(0)). We
can conclude that the rate of convergence of the original system for g
small enough is close to the interval [ g Xpin (Rw(0)), & A max(Rw(O)) .

Equation (4.3.8) gives an interpretation of R,(0) in the frequency
domain, and also a mean of computing an estimate of the rate of con-
vergence of the adaptive algorithm, given the spectral content of the
reference input. If the input 7 is periodic or almost periodic

r(t) = X rsin(wet) (4.3.12)
3

then the integral in (4.3.8) may be replaced by a summation
rf Aw . - .
R,(0) = % —2{‘— Re [Hw,(ka) HL ka)] (4.3.13)

Since the transfer function f{w, depends on the unknown plant
being identified, the use of (4.3.11) to determine the rate of convergence
is limited. With knowledge of the plant, it could be used to determine
the spectral content of the reference input that will optimize the rate of
convergence of the identifier, given the physical constraints on r. Such a
procedure is very reminiscent of the procedure indicated in Goodwin &
Payne [1977] (Chapter 6) for the design of input signals in identification.
The autocovarignce matrix defined here is similar to the average infor-
mation matrix defined in Goodwin & Payne [1977] (p. 134). Our
interpretation is, however, in terms of rates of parameter convergence of
the averaged system rather than in terms of parameter error covariance
in a stochastic framework.
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Note that the proof of exponential stability of theorem 2.5.1 was
based on the Lyapunov function of theorem 1.4.1 that was an average of
the norm along the trajectories of the system. In this chapter, we aver-
aged the differential equation itself and found that the norm becomes a
Lyapunov function to prove exponential stability.

It is also interesting to compare the convergence rate obtained
through averaging with the convergence rate obtained in Chapter 2. We
found, in the proof of exponential convergence of theorem 2.5.1, that the
estimate of the convergence rate tends to ga;/é when the adaptation
gain g tends to zero. The constants «, é resulted from the PE condition
(2.5.3), i.e., (4.3.3). By comparing (4.3.3) and (4.3.4), we find that the
estimates provided by direct proof and by averaging are essentially
identical for g = ¢ small.

Example

To illustrate the conclusions of this section, we consider the following
example

) k,
Py - (4.3.14)

The filter is chosen to be \(s) = (s+1;)/1, (where [/, = 10.05,
l, = 10 are arbitrarily chosen such that |):( Jj I = 1). Although X is not
monic, the gain /; can easily be taken into account.

Since the number of unknown parameters is 2, parameter conver-
gence will occur when the support of S, (dw) is greater than or equal to 2
points. We consider an input of the form r = rgsin(wgt), so that the
support consists of exactly 2 points.

The averaged system can be found by using (4.3.9), (4.3.13)

1 apkp
, I} wh+a}
bay = 85 . 4.3.15

w+a} wh+a}
with ¢4,(0) = ¢g. When rg =1, wg = 1, a, = 1, k, = 2, the eigenvalues

of the averaged system (4.3.15) are computed to be ——3—+4\/—g—g

i

-1.309g, and - 2—4—\'/—5— g = —-0.191g. The nominal parameter 9"
(ky,/ 1y, (l2-ap)/1y). We let  6(0) = 0, ) that
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¢T(0) = (-0.199, - 0.9).
Figures 4.1 to 4.4 show the plots of the parameter errors ¢, and ¢2,
for both the original and averaged systems, and with two different adap-

tation gains g = 1, and g = 0.1

0.5

Original

0.25
qb1 OJES:
0.0 - Averaged
-0.125
-ozs - L v ‘ " l -5 l 20

Time(s)
Figure 4.1: Parameter Error ¢, g=1

We notice the closeness of the approximation forg = 0.1.

Figures 4.5 and 4.6 are plots of the Lyapunov function (4.3.10) for
g =1and g = 0.1, usinga logarithmic scale. We observe the two slopes%
corresponding to the two eigenvalues. The closeness of the estimate 0
the convergence rate by the averaged system can also be appreciated
from these figures. ‘

Figure 4.7 represents the two components of ¢, one as a funct.lon of
the other when g = 0.1. It shows the two subspaces corresponding to
the small and large eigenvalues: the parameter error first moves fast
along the direction of the eigenvector corrgqundmg to the layge eigen-
value. Then, it slowly moves along the direction corresponding to the
small eigenvalue.

4.4 AVERAGING THEORY—TWO-TIME SCALES . o
We now consider a more general class of differential equations arising in
the adaptive control schemes presented in Chapter 3.
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0.225 ¢

- Original

Averaged
-0.075
-0.15
-0.225 1 Ik | ) | 1 1 J
0.0 25 50 75 100

Time(s)

Figure 4.2: Parameter Error ¢, (¢ = 0.1)

Averaged
/
-0.15 :
: \
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Figure 4.3: Parameter Error ¢, (g = 1)
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Averaged
0.0
-0.15 |
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Figure 4.4: Parameter Error ¢, (g =0.1)
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Figure 4.5: Logarithm of the Lyapunov Function (g = 1)
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Figure 4.6: Logarithm of the Lyapunov Function (g = 0.1)
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Figure 4.7: Parameter Error ¢;(¢;) (¢ = 0.1)
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4.4.1 Separated Time Scales
We first consider the system of differential equations
(4.4.1)

4.4.2)

x = ef(t, x,y)
y = AX)y + eglt, x,¥)

where x(0) = xo, ¥(0) = yo, x € R”,and y € R™.

The state vector is divided into a fast state vector y and a slow
state vector x, whose dynamics are of the order of ¢ with respect to the
fast dynamics. The dominant term in (4.4.2) is linear in y, but is itself
allowed to vary as a function of the slow state vector.

As previously, we define

o+ T
fav(x) = lim "1" f f(T, X, 0) d‘l’ (443)
T->00 T 1
and the system
xav = fav(xav) xav(o) = X (444)

is the averaged system corresponding to (4.4.1)-(4.4.2). We make the
following additional assumption.

Definition  Uniform Exponential Stability of a Family of Square

Matrices

The family of matrices 4(x) € R™*™ is uniformly exponentially stable
for all x € By, if there exist m, A, m’, N >0, such that for all x € B,
and? >0

me Xt < || e || < me (4.4.5)

Comments

This definition is equivalent to require that the solutions of the system
y = A(x)y are bounded above and below by decaying exponentials,
independently of the parameter x.

It is also possible to show that the definition is equivalent to requir-
ing that there exist py, P2, 41, 42>0, such that for all x e By, there
exists P(x) satisfying p,I < P(x) < p,I, and -q,] =< AT(x)P(x)
+ P(x)Ax)s -q1.

We will make the following assgmptions.
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Assumptions

For some 4 >0

(B1) The functions f and g are piecewise continuous functions of
time, and continuous functions of x and y. Moreover,
f(,0,0)=0, g(¢,0,0) =0 for all £ =0, and for some /,, /,,
l3,1420

[ S, x1, y) = S8, x2,02)] < Lilxi—xa| + |y -y
lg(t, x1,y) - 8(t, x2, y2)| < B3| xy=xa| + l4|y1-yal (4.4.6)

forall t 20, x{, x € By, ¥1, y2 € Bj. Also assume that
f(t, x, 0) has continuous and bounded first partial derivatives
with respect to x, forallt 2 0, and x € B,.

(B2) The function f(¢, x, 0) has average value f;(x). Moreover,
fa(0) = 0, and f,,(x) hias continuous and bounded first partial
derivatives with respect to x, for all x € By, so that for some
l, 20

|fav(xl) - fav(x2)| < lalel _XZI (4-4-7)

for all x;, x, € By.
(B3) Let d(¢, x) = f(¢, x, 0) = f4(x), so that d(¢, x) has zero aver-
age value. Assume that the convergence function can be written

as y(T)| x|, and that ad—(at)’cﬁ has zero average value, with
convergence function v (7).

(B4) A(x) is uniformly exponentially stable for all x € B, and, for
some k; = 0

“91‘16—;5—) “ <k, forallxeB, (4.48)

(BS) For some h'<h, |x,(t)] € By  on the time intervals con-
sidered, and for some hq, yo € B, (where h’, hy are constants
to be defined later). This assumption is technical, and will
allow us to guarantee that all signals remain in B .

As for one-time scale systems, we first obtain the following preliminary
lemma, similar to lemma 4.2.3.

Lemma 4.4.1 Perturbation Formulation of Averaging—Two-Time Scales

If the original system (4.4.1)-(4.4.2) and the averaged system
(4.4.4) satisfy assumptions (B1)~-(B3)
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Then  there exist functions w,(f, x), £(¢) as in lemma 4.2.2 and ¢ >0,
such that the transformation

x = z+ewlt,2z) (4.4.9)
is a homeomorphism in By for all € < ¢;, and
Ix-z| < &(9]z] (4.4.10)
Under the transformation, system (4.4.1) becomes
2 = efg(zZ) +epi(t,2,€) +€epa(t, 2, ¥, € (4.4.11)
z(0) = Xxo
where
|pi(t, z, 9l < E(9ki| 2]
|pat, z,y, Ol < ka|yl (4.4.12)

for some k,, k, depending on /,, I3, l,.

Proof of Lemma 4.4.1 in Appendix.

We are now ready to state the averaging theorems concerqing Fhe
differential system (4.4.1)-(4.4.2). Theorem 4.4.2 is an approximation
theorem similar to theorem 4.2.4 and guarantees that the trajectories of
the original and averaged system are arbitrarily close on compact inter-
vals, when ¢ tends to zero. Theorem 4.4.3 is an exponential stability
theorem, similar to theorem 4.2.5. .

Theorem 4.4.2 Basic Averaging Theorem

If the original system (4.4.1)-(4.4.2) and the averaged system
(4.4.4) satisfy assumptions (B1)-(BS5)

Then  there exists ¥ (¢) as in lemma 4.2.3 such that, given 7 2 0

| x(t) = Xa()] < ¥(br (4.4.13)
for some by 2 0, ey>0and forallt € [0, T/e],and ¢ < er.

Theorem 4.4.3 Exponential Stability Theorem

If the original system (4.4.1)-(4.4.2) and the averaged system
(4.4.4) satisfy assumptions (B1)-(BS), the function fa(x) has
continuous and bounded first partial derivatives in x, and x = 0
is an exponentially stable equilibrium point of the averaged sys-
tem

Then the equilibrium point x = 0, y = 0 of the original system is
exponentially stable for e sufficiently small.
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Comments

As for theorem 4.2.5, the proo© of theorem 4.4.3 gives a useful bound on
the rate of convergence of the nonautonomous system. As e¢—0, the
rate tends to the bound on the rate of convergence of the averaged sys-
tem that one would obtain using the Lyapunov function for the averaged
system. Since the averaged system is autonomous, it is usually easier to
obtain such a Lyapunov function for the averaged system than for the
original nonautonomous system, and conclusions about its exponential

convergence can be applied to the nonautonomous system for e
sufficiently small.

4.4.2 Mixed Time Scales

We now discuss a more general class of two-time scale systems, arising
in adaptive control

"

x = ¢f'(t, x,)) (4.4.14)

)

y AX)Y + h(t, x) + eg'(t, x, ") (4.4.15)

We will show that system (4.4.14)-(4.4.15) can be transformed into the
system (4.4.1)-(4.4.2). In this case, x is a slow variable, but y* has both
a fast and a slow component.

The averaged system corresponding to (4.4.14), (4.4.15) is obtained
as follows. Define the function

!
v(t, x) i= [eA®Dh(r,x) dr (4.4.16)
0
and assume that the following limit exists uniformly in ¢ and x
1 10+'T
fox) = lim = [ £, x,v(, %)) dr (4.4.17)
T—»m T IO

Intuitively, v (¢, x) represents the steady-state value of the variable )’
with x frozen and ¢ = 0 in (4.4.15). Then, f is averaged with v(¢, x)
replacing )’ in (4.4.14).

Consider now the transformation

y = y-v(,x) (4.4.18)
Since v (¢, x) satisfies

:%v(t,x) - AG)V(, X))+ R, x) V(0 = 0 (4.4.19)

we have that
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j = Ay + |- 2EE @ x y o)

+g’(t,x,y+v(t,x))] (4.4.20)

so that (4.4.14), (4.4.20) is of the form of (4.4.1), (4.4.2) when
flt,x,y) = [t x,y+v({t, X)) (4.4.21)

.o ox) ‘(¢ +v(t, x))
g(t,x,)’)— - ax f(’x’y (a

+ g, x,y+v(t, X)) (4.4.22)

The averaged system is obtained by averaging the right-hand sic'le of
(4.4.21) with y = 0, so that the definitions (4.4.17), and (4.4.3) (with f

given by (4.4.21)) agree. ' '

To apply theorems 4.4.2 and 4.4.3, we require Assqmptlpns (Bl)j-
(B5) to be satisfied. In particular, we assume similar Lipschitz condi-
tions on [, &', and the following assumption on A(t, x)

oh(t, x .
(B6)  hi(z,0) =0 forall £ 20, and H——%;—l H is bounded for all

t =0, x€ By . .
This new assumption implies that v(t,0) =0 It also implies that

”______av((;, X) “ is bounded for all ¢ = 0, x € By, since
X

av (¢, x) =} eA(x)(z-f)ah(T,X)
ox; 0 0x;

+ 9 [eA(X)(t—f)] h(1,X)‘ dr (4.4.23)
ax,'

and using the fact that e#®¢~" and % AW -7 are bounded by
exponentials ((4.4.5), and (A4.4.30) in the proof of theorem 4.4.3).

45 APPLICATIONS TO ADAPTIVE CONTROL '
For illustration, we apply the previous results to the output error direct
adaptive control-algorithm for the relative degree 1 case. . .

We established the complete description of the adaptive system 1n
Section 3.5 with (3.5.28), i.e,,

50) = Apelt) + budT (W) + bndT (1) Q e(O)
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é(t) = -gche()wn(t) - gche(t)Q e(t) (4.5.1)

where g is the adaptation gain. With the exception of the last terms
(quadratic in e and ¢), (4.5.1) is a set of linear time varying differential
equations. They describe the adaptive control system, linearized around

the equilibrium e = 0, ¢ = 0. We first study these equations, then turn
to the nonlinear equations,

4.5.1 Output Error Scheme—Linearized Equations

The linearized equations, describing the adaptive system for small values
of e and ¢, are

e(t) = Ape(t) + by wh(t) (1)

¢t) = —gwnlt)cn e(t) (4.5.2)

Since w,, is bounded, it is easy to see that (4.5.2) is of the form of
(4.4.14), (4.4.15) with the functions f* and h satisfying the conditions of
Section 4.4. Recall that 4,, is a stable matrix.

The function v(¢, ¢) defined in (4.4.16) is now

!
v(t,8) = |[e* P buwh(rydr| ¢ (4.5.3)
0
and f,, is given by
to+ T
»@) = — lim = | wu(t)el
Sak®) = - lim 7 [ wn(0)

to

H
. je/*m"“’)bmw;(f)dr dt ¢  (4.5.4)
0

Frequency Domain Analysis

To derive frequency domain expressions, we assume that r is stationary.
Since the transfer function from r — w,, is stable, this implies that w,, is
stationary. The spectral measure of w,, is related to that of r by

Sw(dw) = Hy ,(j) Hy (j) S{dw) (4.5.5)

where the transfer function from r — w,, is given by (using (3.5.11))
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1
(SI—A)_lb)\ﬁ—lM

] 5.6
A, = i (4.5.6)
(sI -A) ‘oM
which is a stable transfer function.
Define a filtered version of w,, to be
t
W) = [che™™ Vbmwin(r)dr
0
- L row (4.5.7)

o]

i hat the signal wy
where the last equality follows from (3.5.22): Note t '
was also used in the direct proof of exponential convergence 1n Chapter

2 (cf. (2.6.34)).
Since ¢l (I = Ap) ™ b = L M (s) is stable, wp(t) is stationary.

4]
We let
lo'*‘T
Ry (0) = lim — [ walt)Wht)dt (4.5.8)
mmf T—+00 T 1

which was called the cross correlation between Wy, and Wy,r (evaluated at
0) in Section 1.6. Consequently, we may use (4.5.7) and (4.5.8) to
obtain a frequency domain expression for Ry, w,, (0) as

@ A “, s
Ry w (0 = —— [ Ay () Hy (o) M(j)S{dw)  (4.59)
m o 27|'C(‘) -00

Since r is a scalar, S,(dw) is real and consequently an even function of w
(cf. Section 1.6). This may be used to show that

Rupwy @ = == ] Re [ A2 () AL, o) | Re B (o) S:(de)

21!'00 -00

*

w 75 ~ .
e LT 1 [ 5, ) BE o) | 1m 1) o)
21rco - Q0 3

and that the first matrix in the right-hand side is symmetric, while the
second in antisymmetric.
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With (4.5.7) and (4.5.8), (4.5.4) shows that th :
LTI system ) at the averaged system is a

bay = “ngmw,,,f(O)d’av ¢av(0) = ¢p (4'5'10)

Convergence Analysis

Singe M (;) is strictly positive real, the matrix R,, , ,(O) is a positive
semndeﬁmtg matrix. Unlike the matrix R,(0) of Secti"on 4.3, R, . (0)
need not be symmetric, so that its eigenvalues need not be real. How-

ever, the real parts are guaranteed to be positive, and a natural
Lyapunov function is again

v(¢av) = id’avlz = ¢Z;/¢av (4511)
and

~¥(ba) = g0k [mewm/(O) + R,mem/(O)] ay (4.5.12)

The m‘atfix in .parentheses is symmetric positive semidefinite. As previ-
ously, it is positive definite if w,, is PE.

When the reference input 7 is periodic or almost periodic, i.e.,
r(t) = ; re sin (wg t) (4.5.13)

an expression for Ry w, y (0) is
R (0) _ __1__ rﬁ 2 ] . T .
v @ = =3 | - Re | Ay, Goo) HE, (o) |
€0 k "
-ReM(jwk)]
1 ré Ae A
+ —TE [7 Im [Hw,,,r(./wk)Hvz‘ r(jwk)]

Co k "

- Im M (jowg) ] (4.5.14)
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Example

As an illustration of the preceding results, we consider the following
example of a first order plant with an unknown pole and an unknown
gain

P(s) = k (4.5.15)
5= s+a, -
We will choose values of the parameters corresponding to the Rohrs
examples (Rohrs et al [1982], see also Section 5.2) , when no unmodeled
dynamics are present.
The adaptive process is to adjust the feedforward gain ¢ and the
feedback gain dj so as to make the closed-loop transfer function match
the model transfer function

“ Km
M(s) = Tra (4.5.16)
m

To guarantee persistency of excitation, we use a sinusoidal input
signal of the form

r(t) = rosin(wp?) (4.5.17)
Thus, (4.5.2) becomes
éot) = —ameo(t) + kp (&, (1) r (1) + dy(t) ym(t))

6.1) = -gedt)r(t)

6,(1) = —geo(t)ym(?) (4.5.18)
where

o,(t) = colt) - €6

¢,(1) = do(t) - d§ (4.5.19)

It can be checked, using (4.5.14), that the averaged system defined in
(4.5.10) is now

9

am km kl%l (arzn - ‘*’%)

. Rk (@i+wf) (ak+wh)? 4590
¢HV - g 2 km k,%l amkrgl ¢aV ( ot )

| (@3+uf) (@} +od)
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With a, =3, k,, =3, a,=1, k, =2, rg=1, wg=1, g =1, the
two eigenvalues of the averaged system are computed to be —0.0163 ¢
and -0.5537g, and are both real negative. The nominal parameter 6
= (km/kp, (@, — am)/k,). We let 6(0) = 0, so that #T(0) = (- 1.5, 1).

Figures 4.8, 4.9 and 4.10 show the plots of the parameter errors
¢,(¢,) for the original and averaged system, with three different frequen-
cies (wg = 1,3,95).

1.4 Averaged
1.2+
1.0 -
(#y 0.8 : Original /

0.6

0.4

0.2 L 1 1 | ] | L ]
~1.6 -1.2 -0.8 -0.4 0.0

Figure 4.8: Parameter Error ¢, (¢,) (r = sin¢)

Figure 4.10 corresponds to a frequency of the input signal wy = 5, such
that the eigenvalues of the matrix R, ; (0) are complex:

(-0.0553+,0.05076)g. This explains the oscillatory behavior of the
original and averaged systems observed in the figure, which did not exist
in the previous examples of Section 4.3.

4.5.2 Output Error Scheme—Nonlinear Equations
We now return to the complete, nonlinear differential equations

e(t) = Ape(t) + bypoT(W)wnult) + bnad’(t)Q e(t)

o(t) = —gwnt)che(t) - gQe(t)che(t) (4.5.21)
From (4.4.45)
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Averaged

1.50

1.25

1.00 Original

¢y 0.75

0.50
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0.25
0.0 ] ) } ! —
-1.5 -1.0 -0.5 0.0 0.5

Figure 4.9: Parameter Error ¢,(¢,) (r = sin 3¢)

Averaged

1.5+

1.2

Original
0.9

0.6

0.3

0.0

-1.5 -1.0 -0.5 0.0

Figure 4.10: Parameter Error ¢, (¢,) (r = sin5¢)
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t
V([, ¢) - fe(A,,,+bm¢7'Q)(l~f)bm¢Twm(T)dT (4.522)
0

so that the averaged system is

‘1; av T gfav (¢av)
where f,, is defined by the limit

$2,(0) = ¢(0) (4.5.23)

to+T

. 1
fav( ¢) = - Tllmm —]': ’J; [wm(t)chr; V(t,d))

+ Qv(t, ¢)elve, qb)] dt (4.5.24)

The assumptions of the theorems will be satisfied if the limit in
(4.5.24) is uniform in the sense of (B3) and provided that the matrix

Ap + by ¢T Q is uniformly exponentially stable for ¢ € Bj. This means
that if the controller parameters are frozen at any point of the trajectory
the resulting time invariant system must be closed-loop stable.

Frequency Domain Analysis

The expression of f,, in (4.5.24) can be translated into the frequency
domain, noting that w,, is related to r through the vector transfer func-
tion H,, ,

Sak®) = =5 [ [ B =)+ Q (= Jol -y~ b 97 0)"!

-Q0
b8 Bl = o) [ch ol = A~ 07 )
b 67 By, (o) S, (do) (4.5.25)

where S, (dw) is the spectral measure of r. Note that f,, can be factored
as

Sald = =Aa(9) - ¢ (4.5.26)

where A, : R* - R *?" is similar to R,, ,_(0) in Section 4.5.1, but
now depends nonlinearily on ¢. The expression in (4.5.25) is more com-
plex than in the linear case, but some manipulations will allow us to
obtain a more interesting result.

Recall that (4.5.21) was obtained from the differential equation
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e(t) = Ame(t)+ by (1)W(1)

o(t) = —gw(t)che(t) (4.5.27)

by noting that w(t) = w,(t) + Q e(t). In general, (4.5.27) is of limited
use, precisely because w depends on e. The signal w is not an external
signal, but depends on internal variables. On the other hand, w,, is an
exogeneous signal, related to r through a stable transfer function.

In the context of averaging, the differential equation describing the
fast variable (i.e., e) is averaged, assuming that the slow variable (i.e., ¢)
is constant. However, when ¢ is constant, w is related to r through a
linear time invariant system, with a transfer function depending on ¢. If
det(sI — A,, - byoT Q) is Hurwitz (as we assume to apply averaging), this
transfer function is stable. Therefore, assuming that ¢ is fixed, we can
write

W o= Hyls, ¢) 7 (4.5.28)

so that using (4.5.27), (4.5.25) can be replaced by (4.5.26), with an
expression similar to the expression of R, /(O) in (4.5.9), i.e.

L Ao, 6) B e, 9) M () S () (4.5.29)

2weg -0

Aa(9) =

Explicit Expression for ﬁw,(s, )
Recall that w,, is related to r through the transfer function ﬁwm,, whose
poles are the zeros of det(s/ - 4,,). Let

Xxm(s) = det(s] -Ap,) (4.5.30)

and write the transfer function ﬁw,,,r as the ratio of a vector polynomial
7i(s), and a characteristic polynomial x ,,(s), i.e.,

Hy () = 28 (4.5.31)
" X m($)
We found in Section 3.5 (cf. (3.5.8), (3.5.11)) that
w o= A6 {1y, (4.5.32)
Xm(s) o

Denote ¢, = cg— ¢§, so that 7w = ¢,r + ¢ | W. Assuming that ¢ is con-
stant, (4.5.32) becomes
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— . PO I B
W= xm(S)'I--ljn(sz fi(s) 1+ 2|,
Co C(‘)
A(s) 6 | |
- [ - L+—|r (4.5.33)
Xm(s) = — ¢ Tils) c6
€6
Denote
(4.5.34)

%6(5) 1= Km(s) == 6T AGs)
Co

X4(s) is closed-loop characteristic polynomial, giving the poles of the
adaptive system with feedback 4, that is, the poles of the model transfer

function with feedback ¢. Therefore, x,(s) is also given by

Xo(s) = det (I - Ap-bnoTQ) (4.5.35)
With this notation, (4.5.33) can be written
w o= _XT'E— ’ ﬁW,,,r r+—<&r
X¢ o
Xm , — X br _
= L (Fp)t = | W (4.5.36)
X¢ Xe | Co
On the other hand
o —7
. PR A (R
X COX m
3 in |87 _
- XX |2, (4.5.37)
X¢ Xo¢ 6'5

Define
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Section 4.5
o --+4T
05 IRlxl ]Rlx2n—1 ‘
B(¢) = é € ]R2n—1xl 1R2n—l><2n-l (4~5-38) 1
o —-I !
o |
Le., l

B(d)) € ]R2n x2n

50 that (4.5.36)—(4.5.37) can be written
w = [’) - l'l[_’ ] + X" B(g) - [_’ ] (4.5.39)
N W

w

A

X¢

Wom %o
The vector transfer function ﬁw, can therefore be expressed in terms of

the vector transfer function flwm, by

« X m (S .
H, (s, ¢) = "Xj"”i'l(l +B(¢) Hy,r(5) (4.5.40)
XS
and, as expected
Ho(s,0) = H, (s) (4.5.41)
Convergence Analysis
With (4.5.40), 4 4, can be written
w -~ .
X (Jjw) 2 ok R
Ane) = == [ |22+ B@n s, o)
27CH ~oo | Xo(J®)
(4.5.42)

« AT (ju)( +BT($) M(je) S/(dw)

Consider now the trajectories of the averaged system and let
V(da) = |dal? = ¢5¢a. Note that by (4.5.38), it follows that

for all ¢ (4.5.43)

o7 B(¢) = 0

Denote

R = == ] |22 i o

27rC6 -0 )va(jw)




198 Parameter Convergence Using Averaging Chapter 4

©HY (jo) M(jw)S/(dw) (4.5.44)

It follows that the derivative of v is given by

“VWda) = 8L (R(D)+RT(00) bay (4.5.45)

which is identical to the expression for the linear case (4.5.12), provided
that R(¢,) given in (4.5.44) replaces R, w,,,,(O) given in (4.5.9). It is
remarkable that this result differs from the expression obtained by
linearization followed by averaging in Section 4.5.1 only by the scalar
weighting factor |x,,/ Xl 2, Recall that x,(s) defines the nominal
closed-loop poles ( i.e. when ¢ = 0, while x, defines the closed-loop poles
with feedback gains 6 = ¢ + 6 . The term | X, / X4| 2 is strictly positive,

given any ¢ bounded, and it approaches unity continuously as ¢
approaches zero.

Since M (s) is strictly positive real, R(¢,) is at least positive
semidefinite. As in the linearized case, it is positive definite if w,, is per-
sistently exciting. Using the Lyapunov function v(¢,,), this argument
itself constitutes a proof of exponential stability of the averaged system,
using (4.5.45). By theorem 4.4.3, the exponential stability of the origina!
system is also guaranteed for g sufficiently small.

Rates of convergence can also be determined, using the Lyapunov
function v(¢,,), so that

-V

85 (R($a)+RT(00))) bar
=g . infB Amin(R(@a) +RT(¢a)))v := 2gav  (4.5.46)
o € h

and the guaranteed rate of parameter convergence of the averaged adap-
tive system is g a. The rate of convergence of the original system can be
estimated by the same value, for g sufficiently small.

It is interesting to note that, as |¢,| increases,

Amin(R(#4,) + R T(¢4))) tends to zero in some directions. This indi-
cates that the adaptive control system may not be globally exponentially
stable.

Example

We consider the previous two parameter example. The adaptive system
is described by

eo(t) = —ameo(t) +ky (o (1) r(t) + o)1) eot) + () ym(t))
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6,(1) = -geo®)r(t)
6,(t) = -ge}(t)-geot) ym(t) (4.5.47)

Consider the case when r = rgsin(wg?). 'ljhe averaged sy.stem can
be computed using (4.5.42). We can also verify the expression using
(4.5.47) and the definition of the averaged system (4.5.22).. After s‘?m,e:
manipulations, we obtain, for the averaged system (dropping the “av

subscripts for simplicity)

1

w§+ (am—kp ¢.V)2

~ s [(a ~ky,) 0
$r = ~8kp— m = Oy e

o2 2 k
R P knz___“m " (4.5.48)

kot + o O Ko b6, (4.5.49)

T
Using this result, or using (4.5.42)-(4.5.43), we find that forv=9¢"¢

2
w%+a,2,, 16 ky

-v = 28 5 T
w%+(am'kp¢y)2 2 K

:
P
Amkm ki (am - )

22
wi+al  (w+am)
k2 amky

wg+al  (@§+an)’

- T ¢ (4.5.50)

It can easily be checked that when the first term in brackets is equal
to 1 (i.e. with ¢, replaced by zero), the result is the same as the result

obtained by first linearizing the system, then averaging it (cf. (4.5.20)).
In fact, it can be seen, from the expressions of the averaged systems
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((4.5.10) with (4.5.9), and (4.5.23) with (4.5.26), (4.5.38) and (4.5.42)),
that the system obtained by linearization followed by averaging is identi-
cal to the system obtained by averaging followed by linearization. Also,
given any prescribed B, (but such that det (s/ -4, -b,¢7 Q) is
Hurwitz), (4.5.50) can be used to obtain estimates of the rates of conver-
gence of the nonlinear system,

We reproduce here simulations for the following values of the
parameters: 4, = 3,k, =3,a,=1,k, =2, rg=1,wy=1,g =1. The
first set of figures is a simulation for initial conditions ¢,(0) = - 0.5 and
¢,(0) = 0.5. Figure 4.11 represents the time variation of the function
In(v = ¢7¢) for the original, averaged, and linearized-averaged systems
(the minimum slope of the curve gives the rate of convergence).

|n(¢7¢) -3 - Linearized- averaged
-ql-
-5k
-6 . | , ) ) ‘ ) '
° *© 60 90 120

Time (s)

Figure 4.11: Logarithm of the Lyapunov Function

It shows the close approximation of the original system by the averaged
system. The slope for the linearized-averaged system is asymptotically
identical to that of the averaged system, since parameters eventually get
arbitrarily close to their nominal values. Figures 4.12 and 4.13 show the
approximation of the trajectories of ¢, and ¢,.

Figure 4.14 represents the logarithm of the Lyapunov function for a
simulation with identical parameters, but initial conditions ¢,(0) = 0.5,

#,(0) = -~ 0.5. Due to the change of sign in ¢,(0), the rate of conver-
gence of the nonlinear system is less now than the rate of the linearized

Section 4.5
odr

0 -

-O‘I -

$r -0z}

Py
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Averaged

Original

Linearized-averaged

Il n Il \ ! L -

30 60 90 120
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Figure 4.12: Parameter Error ¢,

Linearized - averaged

30 60 90 120
- Time (s)

Figure 4.13: Parameter Error ¢,
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system, while it was larger in the previous case.

-0.75

-1.50
Original

T -2.25+
In(gp' )
-3.00
Averaged
Linearized-averaged
=375
-4.50
N ] " 1 N L L J
o} 30 60 90 120

Time (s)
Figure 4.14: Logarithm of the Lyapunov Function

These simulations demonstrate the close approximation by the averaged
system, and it should be noted that this is achieved despite an adapta-
tion gain g equal to 1. This shows that the averaging method is useful
for values of g which are not necessarily infinitesimal (i.e. not neces-

sarily for very slow adaptation), but for values which are often practical
ones.

Figure 4.15 shows the state-space trajectory ¢,(¢,), corresponding
to Figure 4.10, that is with initial conditions ¢,(0) = - 1.5,¢,(0) = 1,
and parameters as above except wy = 5. Figure 4.15 shows the distor-

tion of the trajectories in the state-space, due to the nonlinearity of the
differential system.

4.5.3 Input Error Scheme

An expression for the averaged system corresponding to the input error
scheme may also be obtained. We consider the scheme for arbitrary
relative degree. For simplicity, however, we neglect the normalization
factor in the gradient algorithm and the projection for the feedforward
gain ¢g.
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Linearized-Averaged
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Figure 4.15: Parameter Error ¢, (¢,) (r = sin5¢)

The equation describing the parameter update is then simply

o(t) = —gvW ()e(0) (4.5.51)
so that the averaged system is again of the form
‘1'5 av — gAav(d’av )¢av (4552)

where A4(¢,,) is the autocovariance of the vector v at¢ = 0: It depends
on ¢, because v is obtained from a closed-loop system with feedback
depending on the parameter eIror ¢gy. Within the framework of averag-

ing, the system is a linear time invariant system, so that we may write
(as in (4.5.28))

v = H,(s,0)F (4.5.53)

Explicit Expression of ﬁ,,,(s, )
Recall that (cf. (3.5.10))
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. . |n co
v = LY = £V P 2 f- 0
(@)=L [w] =L - (4.5.54)

Since the controller is the same as for the output error scheme, we may
use (4.5.36)-(4.5.37). First, rewrite (4.5.36) using ¢, = ¢y - ¢§ so that

- Co im _
e CZ 4.5.55
66 Xe ( ' )
and
1 ¢ -
r+_‘.¢TW = —-O—r+—l--¢Tw
4] co cd
_ S CoXm |¢T _
= —r+ — | F=w, (4.5.56)
o ¢ Xeo | €0

With (4.5.37), (4.5.56) simply becomes

1 Co )2
r+ —¢w = —=20) (4.5.57)
€o Co X¢
Therefore
C ~_ 1 X r Co ~ %
y = 2 F 1__'”_[ ]_h_O_L-lx'n
N | = —(w
@ 2, [P . S (W) (4.5.58)
and
2 Co ~_ Xm(S)
H,(s,¢) = —‘L I(s) Am )me,(s) (4.5.59)
o Xo(s)

which is the equivalent of (4.5.40) for the input error scheme.

Convergence Analysis

Using the foregoin ;
domain as going result, we may express A,/(¢) in the frequency

2
[00] -~ .
A0 = | [ 121Gy Xm(Jo) |2 ~u .
27 | |L™ () ? | === Hu,,(jw)
Co - 00 x¢(1w) "
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AT (jw) Sy (dw) (4.5.60)

Note that the matrix Agf(¢) is now symmetric and is a positive
semidefinite matrix for all ¢. It is positive definite if the input r is
sufficiently rich. Again, parameter convergence rates may be estimated
from the preceding expression. Although the convergence properties are
quite similar, the symmetry of A,(¢) guarantees that around the equili-
brium, the linearized system is described by a linear time invariant sys-
tem with only real eigenvalues. Therefore, the oscillatory behavior of
the output error scheme is not observed for the input error scheme.

Example

We consider once again the example of Section 4.5.2, but for the input
error scheme. The model transfer function is M = ky /(s +ap), and we
choose L = (s + 1)/ ;. Note that (Mf,)“ ! may be expressed as

S+am)l l am-1, |1

s+am)h _ I L am-h D 4.5.61)
km(S+t’2) km km S+12

The equations describing the overall adaptive system with the input
error scheme are

(ML)' =

Vp = —apyptkou

Vm = —AmYm + km?

u = cor+doyp

%1 = —lhxy+hu ie. x;=L7'(u)

)2,‘2 = —lzx2+z’1y,, ie. X3 = f,"l(yp)

! am -1 . o
X3 = O+ T ) texs = (ML)

e, = CoX3+doXy—X,

CO"C(') = CO'“km/kp

Cp = —gex1X3 -
(@ = am)

kp
Again, we neglected the normalization factor and the projection in the
update law for simplicity.

[l

do = -geixs ¢, = do—dj = do-
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When r = rgsin(wgt), the averaged system is

: 2
sl i [o | uea
¢y 2 w(2)+ 122 o ‘-"(2)"' (@m - p¢y)2
i kma,
ar%r + ‘-‘-‘(2) [¢r]
4.5.62
kmanm k2 oy ( )

at +wd  al +wh

th:n_ wo = 5, Figure 4.16 shows that trajectories of the output scheme
exhibit an oscillatory type of response. Figure 4.17 shows the response
for the input error scheme under comparable conditions.

0.375
0.3

0.225

Py

0.15

0.075

0.2

Figure 4.16: Parameter Error ¢, (¢,)-Output Error Scheme

The parameters are k,, =3, a,,=3, a,=1, k,=2, rg=1, wy=35, g=1,
/;=10.05, [ =10, ¢,(0)=-0.5, $,(0)=0.25. As may be observed, the
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Py
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¢

Figure 4.17: Parameter Error ¢, (¢,)-Input Error Scheme

trajectories do not exhibit oscillatory behavior, reflecting the fact that
the matrix above is symmetric and, therefore, has only real eigenvalues.

4.6 CONCLUSIONS

Averaging is a powerful tool to approximate nonautonomous differential
equations by autonomous differential equations. In this chapter, we
introduced averaging as a method of analysis of adaptive systems. The
approximation of parameter convergence rates using averaging was
justified by general results concerning a class of systems including the
adaptive systems described in Chapters 2 and 3. The analysis had the
interesting feature of considering nonlinear differential equations as well
as linear ones. Therefore, the application was not restricted to linear or
linearized systems, but extended to all adaptive systems considered in
this work, including adaptive control systems.

The application to adaptive systems included useful parameter con-
vergence rates estimates for identification and adaptive control systems.
The rates depended strongly on the reference input and a frequency
domain analysis related the frequency content of the reference input to
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the convergence rates, even in the nonlinear adaptive control case
These resu_lts‘are useful for the optimum design of reference input The);
have thp hr_mtation of depending on unknown plant parameters 'but an
approximation of the complete parameter trajectory is obtained ’and the
updcrstan;img of the dynamical behavior of the parameter error is con-
s1d§rably increased using averaging. For example, it was found that the
trajectory of the parameter error corresponding to the linear error equa-
tion could ‘be approximated by an LTI system with real negative eigen-
valugs, while for the strictly positive real (SPR) error equation it had
possibly complex eigenvalues.

'BCSldCS requiring stationarity of input signals, averaging also
rg:qulrec} slow parameter adaptation. We showed however, through
simulations, that the approximation by the averaged system wa; good for
yaluc?s of the adaptation gain that were close to 1 (that is, not necessarily
19ﬁmtesxmal) and for acceptable time constants in the p’arameter varia-
tions. In fact, it appeared that a basic condition is simply that parame-

ters vary more slowly than do other states and si i
Ny d signals of the adaptive

CHAPTER 3
ROBUSTNESS

5.1 STRUCTURED AND UNSTRUCTURED UNCERTAINTY

In a large number of control system design problems, the designer does
not have a detailed state-space model of the plant to be controlled, either
because it is too complex, or because its dynamics are not completely
understood. Even if a detailed high-order model of the plant is avail-
able, it is usually desirable to obtain a reduced order controller, so that
part of the plant dynamics must be neglected. We begin discussing the
representation of such uncertainties in plant models, in a framework
similar to Doyle & Stein [1981].

Consider the kind of prior information available to control a stable
plant, and obtained for example by performing input-output experi-
ments, such as sinusoidal inputs. Typically, Bode diagrams of the form
shown in Figures 5.1 and 5.2 are obtained. An inspection of the
diagrams shows that the data obtained beyond a certain frequency wy is
unreliable because the measurements aré poor, corrupted by noise, and
so on. They may also correspond to the high-order dynamics that one
wishes to neglect. What is available, then, is essentially no phase infor-
mation, and only an “envelope” of the magnitude response beyond wy.
The dashed lines in the magnitude and phase response correspond to the
approximation of the plant by a finite order model, assuming that there
are no dynamics at frequencies beyond wy. For frequencies below wy, it
is easy to guess the presence of a zero near w;, poles in the neighborhood
of wy, w3, and complex pole pairs in the neighborhood of ws, ws.
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