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Ru(®) = lim + [ ymuTc+ndr e R™"  (16.19)

T+ T I

It may be verified that the relationship between R,, and R, is

Ry(1) = RL(-1) (1.6.20)

and the Fourier transform of the cross correlation is referred to as the
cross spectral measure of u and y.

The cross correlation between the input and the output of a stable
LTI system can be related in much the same way as in proposition 1.6.2.

Proposition 1.6.3 Linear Filter Lemma—Cross Correlation

Let y = H(u), where H is a proper stable m x n matrix transfer func-
tion, with impulse response H(t).

If u is stationary

Then  the cross correlation between u and y is given by

[0 o]
Ry(t) = [ H(r)Ry(t +71,)dry (1.6.21)
-0
and the cross spectral measure is
Syldw) = H*(jw)S,(dw) (1.6.22)

Proof of Propesition 1.6.3

The proof is analogous to the proof of proposition {.6.2 and is omitted
here.

CHAPTER 2
IDENTIFICATION

2.0 INTRODUCTION

In this chapter, we review some identification methods for single-input
single-output (SISO), linear time invariant (LTI) systems. To introduce
the subject, we first informally discuss a simple example. We consider
the identification problem for a first order SISO LTI system described by
a transfer function

W) 5 k,
-~ = P(s) = 2.0.1
F(s) ) S+a, ( )

The parameters k, and g, are unknown and are to be determined by the
identification scheme on the basis of measurements of the input and out-
put of the plant. The plant is assumed to be stable, i.e. a,>0.

Frequency Domain Approach

A standard approach to identification is the frequency response approach.
Let the input r be a sinusoid

i r(t) = sin(wgt) (2.0.2)
The steady-state response is then given by
)?t) = msin(wg? + ¢) (2.0.3)

where
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. k,
m = |P(jw)] = ———
Vwh+a?
- wq
¢ = argP(jwg) = - arc tan [ T] (2.0.4)
(4

Measurements of the gain m and phase ¢ at a single frequency wg ;é 0
uniquely determine k, and a, by inversion of the above'relation§h1p§.
At wy = 0, that is when the input signal is consta_nt, phase information is
lost. Only one equation is left, giving the DC gain. Then, pnly the ratio
of the parameters k, and g, is determined. Conversely, if several fre-
quencies are used, each contributes two equations and the parameters
are overdetermined. . ‘

Frequency response methods will not be further discussed in this
book, because our goal is adaptive control. We will therefore concen-
trate on recursive approaches, where parameter estimates are ppdated in
real-time. However, we will still analyze these algorithms in the fre-
quency domain and obtain similar results as above for the recursive
schemes.

Time Domain Approach ‘
We now discuss schemes based on a time-domain expression of the plant
(2.0.1), that is

Vo(t) = —apyp(t) + kpr(t) (2.0.5)

Measurements of y,, y, and r at one time instant ¢ give us one equation
with two unknown g, and k,. As few as two time instants may be
sufficient to determine the unknown parameters from

-1
—a Vo(t1) r(tl)] yplty) 206
[ kpp] N [J’p(tz) r(t2) }"p(tz) ( 0.6)

assuming that the inverse exists. Note that, as in the frequency-domain
approach, a constant input r(¢;) = r({;) with constant output
Vp(t1) = yp(t2) will prevent us from uniquely determining a, and k.

We may refine this approach to avoid the measurement of y,(¢).
Consider (2.0.1) and divide both sides by s + A\ for some A>0
s+a, | k,

= 7 2.0.7
S+A P S+N ( )

This is equivalent to
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. A-a, k, .
Vp = T Vp + s+>\r (2.0.8)
Define the signals
() _ | a ~(2) - 1 ~
w T r w TN Vp (2.0.9)
or, in the time domain ,
W = e @ o0 Yy (2.0.10)

Then, in the time domain, (2.0.8) reads
vo(t) = kyw(t) + (A - a,)w(r) (2.0.11)

The signals (), w may be obtained by stable filtering of the input and
of the output of the plant. We have assumed zero initial conditions on
w® and w®. Nonzero initial conditions would only contribute
exponential decaying terms with rate )\ (arbitrary), but are not con-
sidered in this simplified derivation. Equation (2.0.11) is to be com-
pared with (2.0.5). Again, measurements at one time instant give us one
equation with two unknowns. However, we do not require
differentiation, but instead stable filtering of available signals.

In the sequel, we will assume that measurements of r and yp are
made continuously between 0 and 7. We will therefore look for algo-
rithms that use the complete information and preferably update esti-
-mates only-on the basis of new data, without storing the entire signals.
But first, we transform (2.0.11) into the standard framework used later
in this chapter. Define the vector of nominal identifier parameters

* kP
0 = A -, (2.0.12)

Knowledge of 6" is clearly equivalent to the knowledge of the unknown
parameters k, and q,. Similarly, define 6(¢) to be a vector of identical
dimension, called the adaptive identifier parameter. 6(t) is the estimate
of 6” based on input-output data up to time ¢. Letting

w“)(t)
' v [wm(,)J

equation (2.0.11) may be written

(2.0.13)

W) = 67 w(t) = wi(r) 6" (2.0.14)

Based on measurements of r(t) and y,(z) up to time t, w(t) may be
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calculated, and an estimate 6(¢) derived. Since each time instant gives
us one equation with two unknowns, it makes sense to consider the esti-
mate that minimizes the identification error

ety = 6T w(t) - y(t) = [ 67() - G'T] w(t) (2.0.15)

Note that the identification error is linear in the parameter error 6 — 6",
We will therefore call (2.0.15) a linear error equation. The purpose of
the identification scheme will be to calculate 6(¢), on the basis of meas-
urements of ¢,(¢) and w(z) up to time ¢.

Gradient and Least-Squares Algorithms

The gradient algorithm is a steepest descent approach to minimize e?(¢).
Since

ael ael
—‘%" 2e 60 = 261 w (2.0.16)

we let the parameter update law
f = —geyw g>0 (2.0.17)

where g is an arbitrary gain, called the adaptation gain.
Another approach is the least-squares algorithm which minimizes

the integral-squared-error (ISE) B‘r( E) vk - af (‘L) )

t
ISE = [ (2.0.18)
0

Owing to the linearity of
obtained directly from

Tor equation, the estimate may be
concition

a |7 f
FY} dr | = T T(r - y(n) | dr = .0.
i | [ | = 2 [0 [W@ ) -y ] d = 0 o)

so that the least-squares estimate is given by

-1
¢ t

bust) = | [ w(r) wl(r) dr z{ w(r) yp(r) dr (2.0.20)
0

Plugging (2.0.14) into (2.0.20) shows that 6,4(t) = 8°, assuming that the
inverse in (2.0.20) exists.
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For adaptive control applications, we are interested in recursive for-
mulations such as (2.0.17), where parameters are updated continuously
on the basis of input-output data. Such an expression may be obtained
for the least-squares algorithms by defining

-1
¢

P@) = j w(r) wT(r) dr (2.0.21)
0
so that
% [P“(z)] = w(t) wT(t) (2.0.22)
Since
_ 4 _ 4 -1
0 = " (1) = = [P(t)P (z)]
= g? [P(z)] ‘(z)+P(z) [.P ‘(z)] (2.0.23)
it follows that
-%[P(z)] - —P(t)% [P-l(z)] P(t)
= - P(t) wt) wT(t) P(t) (2.0.24)

On the other hand, (2.0.20) may be written

t
6us5(t) = P@) [ w(r) yyr) dr (2.0.25)
0

so that, using (2.0.24)

205

- P(t) w(t) wl(r) 6.s(2) + P(t) w(t) pylt)

it

- PO ) [ w70 b15(0) - 3,0 ]

- P(r) w(t) ey(t) (2.0.26)

Note that the recursive algorithm (2.0.24), (2.0.26) should be
started with the correct initial conditions at some ¢ > O such that

B
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-1
o

P(ty) = ] w(r) wT (r) dr (2.0.27)
0
exists. In practice, the recursive least-squares algorithm is started with
arbitrary initial conditions at ¢y = 0 so that

i) = - PO w) (7@ W) - )| 600) = 6
P(t) = - P(t)yw(t) wIt) P(t) F(0)=Py>0 (2.0.28)
It may be verified that the solution of (2.0.28) is - F (O ) T
Q! T ! 4
(1) = | Pg+ £ wi) wT(r) dr Pyt + £ v w(r)dr|  (2.0.29)

instead of (2.0.20). Since y, = 9*"w, the parameter error is given by
-1

al -
8(t) - 6" = | Py + j w(r) wT(T);( P()!ao -6%  (2.0.30)
0
it ,
It follows that 6(¢) converges asymptotically to 8" if ‘{ w(r) wi(r)dr is

unbounded as ¢ - oo. In this chapter, we will study conditions that
guarantee exponential convergence of the parameter estimates to the
nominal parameter. These are called persistency of excitation conditions
and are closely related to the above condition. It is not obvious at this
point how to relate the time domain condition on the vector w to fre-
quency domain conditions on the input. This will be a goal of this
chapter.

Model Reference Identification

We now discuss another family of identification algorithms, based on the
so-called model reference approach. The algorithms have similarities to
the previous ones, and are useful to introduce adaptive control tech-
niques.

We first define a reference model transfer function

A

. k,,
Imo M) = (2.0.31)
U N

where a,,, k,,, >0. In the time domain
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Im(t) = = amym(t) + kpyu(?) (2.0.32)
Let the input u to the model be given by
u(t) = agt)r(t) + bo(t)ym(t) (2.0.33)

where ao(t), bo(t) are adaptive parameters and r is the input to the
plant. The motivation is that there exist nominal values of the parame-

ters, denoted ag, by, such that the closed-loop transfer function matches
any first order transfer function. Specifically, (2.0.32) and (2.0.33) give
the closed-loop system

Pm(t) = = (am = kmbolt) ym(t) + kmao(t) r(2) (2.0.34)
so that the nominal values of ao, by are
* kp * am — ap
ag = %, by = %, (2.0.35)

Clearly, knowledge of ag, bg is equivalent to knowledge of a,, k,. We
define the following vectors

a®)] ., |ao G
o(t) = [bz(,)] = w(t) = [yrm(t))] (2.0.36)

and the identification error

ei(t) = ym(t) = yp(t) (2.0.37)
so that —
e\(t) = —(amZkmbot)ym(t) + kmaot)r(t) + a,y,(t) -k, r(t)
= —apeyt) + kn((aot) - ag) r(t) +l(\bo(t) = bo) yp(t)
= —ayet) + ky0T(1) - 0" )w(1) (2.0.38)
In short
et) = M [(eT(:)-a‘T)w(z)] (2.0.39)

which may be compared to the linear error equation (2.0.15). This
equation is still linear, but it involves the dynamics of the transfer func-
tion M. Can we still find update algorithms for 6(¢), based on the new
error equation? The answer is yes; but the approach is now based on the
Lyapunov function
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etk

vie0) = - + " 0T -0")(6-6% (2.0.40)
so that
. " T *7 T T,
V = —aue +kye (@ -0 )w+ k(0" -0 )6 (2.0.41)
By letting
6 = —eyw (2.0.42)
it follows that
V = —amel £ 0 (2.0.43)

Therefore, e, and 6 are bounded. It may also be shown that ¢, — 0 as
t - 0o and that § — 6° under further conditions on the reference input.
The resulting update law (2.0.42) is identical to the gradient algo-
rithm (2.0.17) obtained for the linear error equation (2.0.15). In this
case however, it is not the gradient algorithm for (2.0.39), due to the

presence of the transfer function M. The motivation for the algorithm
lies only in the Lyapunov stability proof.

Note that the derivation requires a,,> 0 (in (2.0.43)) and k,, >0 (in
(2.0.40)). In general, the conditions to be satisfied by M are that

o M is stable

« Re (M (jw)) >0 for all w=0.

These are very important conditions in adaptive control, defining strictly
positive real transfer functions. They will be discussed in greater detail
later in this chapter.

2.1 IDENTIFICATION PROBLEM

We now consider the general identification problem for single-input
single-output (SISO) linear time invariant (LTI) systems. But first, a few
definitions. A polynomial in s is called monic if the coefficient of the
highest power in s is 1 and Hurwitz if its roots lie in the open left-half
plane. Rational transfer functions are called stable if their denominator
polynomial is Hurwitz and minimum phase if their numerator polyno-
mial is Hurwitz. The relative degree of a transfer function is by
definition the difference between the degrees of the denominator and
numerator polynomials. A rational transfer function is called proper if
its relative degree is at least O and strictly proper if its relative degree is
at least 1.
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In this chapter, we consider the identification problem of SISO LTI
systems, given the following assumptions.

Assumptions

(A1) Plant Assumptions
The plant is a SISO LTI system, described by a transfer func-

tion
) by = ke, ) @.1.1)
F(s) dp(s)

where 7(s) and y,(s) are the Laplace transforms of tI}e input
and output of the plant, respectively, and 7i,(s) and d,(s) are
monic, coprime polynomials of degrees m and n respectively.
m is unknown, but the plant is strictly proper (m <n-1).

(A2) Reference Input Assumptions
The input r(.) is piecewise continuous and bounded on R ,.

The objective of the identifier is to obtain estimates of k, and of the
coefficients of the polynomials 7,(s) and d,(s) from measurements of the

input r(¢) and output y,(¢) only. Note that we do not assume that Pis
stable.

2.2 IDENTIFIER STRUCTURE

The identifier structure presented in this section is generally known as an
equation error identifier. (cf. Ljung & Soderstrom [1983]). The transfer

function f’(s) can be explicitly written as

e by

Po6) _ piey - ays”
7(s) ST+ Bs" T+ By

where the 2n coefficients «;...@, and B;...B8, are unknown. This
expression is a parameterization of the unknown plant, that is a model
in which only a finite number of parameters are to be determined. For
identification purposes, it is convenient to find an expression which
depends linearly on the unknown parameters. For example, the expres-
sion

(2.2.1)

SnyAp(s) = (‘)‘.nsn-l + 0+ ap) F(s)

= (Bns" "+ 1) Pp(S) (2.2.2)

is linear in the parameters «; and 8;. However, it would require explicit
differentiations to be implemented. To avoid this problem, we
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introduce a monic nth order polynomial denoted X(s) =
s"+ X"+ - + X\, This polynomial is assumed to be Hurwitz but
is otherwise arbitrary. Then, using (2.1.1)
NSIDS) = k()P (s) + (X(5) = dyfs)) F(5) (2.2.3)
or, with (2.2.1)
. a,,s""+‘-'+a|A
yp(s) = N r(s)
A(s)
A =Ba)s" Ut (A -
N (A = Br) A\ -8 5,(5) (2.2.4)

A(s)
This expression is a new parameterization of the plant. Let

a's) = aps" Vv 4 = ky, fip(s)
B*s) = Qu=Ba)s" '+ (=B = M) -d(s) (2.2.5)
so that the new representation of the plant can be written
Py = A ey 4 B9 5 ) (2.2.6)
A(s) A(s)
The transfer function from r —> p, is given by
j;p(s) _ d‘(S) (2 2 7)

Fs)  Ms)-b(s)
and it is easy to verify that this transfer function is 13(5) when 4°(s) and
l;'(s) are given by (2.2.5). Further, this choice is unique when 7,(s) and
c;',,(s) are coprime: indeed, suppose that there exist a%(s)+ da(s),

5‘(3) +b (s), such that the transfer function was still kp A,(s )/c;'p(s).
The following equation would then have to be satisfied

0aG) e W) gy (2.2.8)
Bb(S) dp(s)

However, equation (2.2.8) has no solution since the degree of c;',, is n,
and 7, 5’,, are coprime, while the degree of 5 is at most 7 - .
State-Space Realization

A state-space realization of the foregoing representation can be found by
choosing A € R"™", b, € R" in controllable canonical form, such that
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[0 10 0 | 0
0 01 0
A = .. 0 b)\ =
0 0 - 1 0
N\ -\ 1
1
S
(sT-A)-'hy = — j (2.2.9)
A(s) .
S" -1
In analogy with (2.2.5), define
a* = (e, ..., ) b = (=B, ..., M= B (2.2.10)
and the vectors wi'(1), wi(1) e R”
wi = AwD + by
w = Aw® 1 by, (2.2.11)
with initial conditions w{"(0), w{?(0). In Laplace transforms
W) = (1 - A) T B F(s) + (sT - A) ' wiD(0)
W) = (ST =A)""h0,05) + (sT - A) 'wP0)  (2.2.12)
With this notation, the description of the plant (2.2.6) becomes
Pp(s) = a* wis) + b w(s) (2.2.13)

and, since the plant parameters a*, b* are constant, the same expression
is valid in the time domain

vty = a* wihe) + b* wdr) = 6% wyr) (2.2.14)
where
0*" = (@, bh* )e R
w7 = (W' (1), w?' (1)) e R> (2.2.15)
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Equations (2.2.10)—(2.2.14) define a realization of the new parame-
terization. The vector w), is the generalized state of the plant and has

dimension 2n. Therefore, the realization of 13(s) is not minimal, but the
unobservable modes are those of A (s) and are all stable.

The vector 8° is a vector of unknown parameters related linearly to
the original plant parameters «;, 8; by (2.2.10)-(2.2.15). Knowledge of a
set of parameters is equivalent to the knowledge of the other and each
corresponds to one of the (equivalent) parameterizations. In the last
form, however, the plant output depends linearly on the unknown
parameters, so that standard identification algorithms can be used. This
plant parameterization is represented in Figure 2.1.

Yp

Y

— L fisi-A)" b

A

(sl-A" b

A

Figure 2.1: Plant Parameterization

Identifier Structure

The purpose of the identifier is to produce a recursive estimate 6(¢) of

the nominal parameter 6°*. Since r and y, are available, we define the
observer

w = AwD 4 by

W = Aw? 4 by, (2.2.16)
to reconstruct the states of the plant. The initial conditions in (2.2.16)
are arbitrary. We also define the identifier signals
67(1) = (aT(1), bT(t)) e R¥"
wl(t) = (w'(1), w?'(1)) e R (2.2.17)

By (2.2.11) and (2.2.16), the observer error w(t) - wy(t) decays exponen-
tially to zero, even when the plant is unstable. We note that the general-
ized state of the plant w,(¢) is such that it can be reconstructed from
available signals, without knowledge of the plant parameters.

The plant output can be written
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vpt) =67 w(t) + (1) (2.2.18)

where the signal «(t) is to remind one of the presence of an additive
exponentially decaying term, given here by

1) = 6" (wy(t) - w(t)) (2.2.19)

This term is due to the initial conditions in the observer. We will first
neglect the presence of the (¢) term but later show that it does not affect
the properties of the identifier.

In analogy with the expression of the plant output, the output of
the identifier is defined to be

yi(t) = 6T()w(t) eR (2.2.20)
We also define the parameter error
o(1) = 6(z)-6" e R*" (2.2.21)
and the identifier error
ei(t) = yi(t) - yp(t) = T (@)w() + €t) (2.2.22)

These signals will be used by the identification algorithm, and are
represented in Figure 2.2.

r Y,
> B(s) P
Y
A Ayt e
(sl /l\‘) b)‘ (s1-A) b)\ 1
11
w . . —
w(1) . w2 .
a b
Y
>

Figure 2.2: Identifier Structure

2.3 LINEAR ERROR EQUATION AND IDENTIFICATION ALGO-
RITHMS

Many identification algorithms (¢f. Eykhoff [1974], Ljung & Soderstrom
[1983]) rely on a linear expression of the form obtained above, that is
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yt) = 687 w(t) 2.3.1)

where y,(1), w(?) are known signals and 6° is unknown. The vector w(t)
is usually called the regressor vector. With the expression of y,({) is
associated the standard linear error equation

ei(t) = oT()wW() (2.3.2)

We arbitrarily separated the identifier into an identifier structure
and an identification algorithm. The identifier structure constructs the
regressor w and other signals, related by the identifier error equation.
The identification algorithm is defined by a differential equation, called
the update law, of the form

8 = ¢ = F(yy.e;,0,w) (2.3.3)

where F is a causal operator explicitly independent of 6*, which defines
the evolution of the identifier parameter 6.

2.3.1 Gradient Algorithms
The update law

f = -geyw g>0 (2.3.4)
defines the standard gradient algorithm. The right-hand side is propor-

tional to the gradient of the output error squared, viewed as a function
of 6, that is

2 (et @) - 20w (2.3.5)

This update law can thus be seen as a steepest descent method. The
parameter g is a fixed, strictly positive gain called the adaptation gain,
and it allows us to vary the rate of adaptation of the parameters. The
initial condition 6(0) is arbitrary, but it can be chosen to take any a
priori knowledge of the plant parameters into account.

An alternative to this algorithm is the normalized gradient algo-
rithm

6 = 2 >0 (2.3.6)

T &, 3.
where g and v are constants. This update law is equivalent to the previ-
ous update law, with w replaced by w/V1 + vwTw inf = -gwwio.
The new regressor is thus a normalized form of w. The right-hand side
of the differential equation (2.3.6) is globally Lipschitz in ¢ (using
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(2.3.2)), even when w is unbounded.

When the nominal parameter 6 is known a priori to lie in a set
0 € IR¥" (which we will assume to be closed, convex and delimited by a
smooth boundary), it is useful to modify the update law to take this
information into account. For example, the normalized gradient algo-
rithm with projection is defined by

ew

§f = -g—a— 6 e int(0)
& t+ywlw (
ew . T
= Pr|-¢ if 9 €00 and ewllp, <0 (2.3.7)
T+ywlw

where int® and 8@ denote the interior and boundary of 0, Pr(z) denotes
the projection of the vector z onto the hyperplane tangent to 40 at 6 and
Bperp denotes the unit vector perpendicular to the hyperplane, pointing
outward.

A frequent example of projection occurs when a priori bounds

pi,pi" are known, that is
6 elpi,p'l (2.3.8)
The update law is then modified to

6, =0 if 6 = p7 and 6;,<0

or 6; = pf and 6,>0 (2.3.9)

The gradient algorithms can be used to identify the pla}nt parame-
ters with the identifier structure described in Section 2.2 Usmg_ the nor-
malized gradient algorithm, for example, the implementation is as fol-
lows.

Identifier with Normalized Gradient Algorithm—Implementation
Assumptions
(A1)-(A2)
Data
n
Input
r(t), yp(t) e R
Output
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6(z), yit) e R
Internal Signals
w(t) e R (w(¢), w(s) e R™)
0(t) e R*(a(t), b(t) e R")
yi(t), ei(t) e R
Initial conditions are arbitrary.
Design Parameters
Choose
« AeR"*" b, ¢ R" in controllable canonical form such that
det(sI — A) = \(s) is Hurwitz.
e g,v>0.
Identifier Structure
W = Aw® 4 by r

W = Aw® 4+ by,

87 = (a”, bT) estimates of (cts, ..., ay, Ay =81y .\ Ay—=B)
wTl = (W(l)’, w(2)T)
yi=06Tw
erL=Yi—Yp
Normalized Gradient Algorithm
. eyw
f=-g———
£1% ywTw
a
Comment

We leave it to the reader to check that other choices of (A, &,) are possi-
ble, with minor adjustments. Indeed, all that is required for
identification is that there exist unique a*, b* in the corresponding
parameterization. Alternate choices of (sI — A)~ b, include
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T
1
s+a
(sI -A) 'by = : a>0
|
| (s +a)" |
and
b
S+a;
(sI -A)"'by = ai#a;>0,b#0
by
| (s+a,) |

2.3.2 Least-Squares Algorithms

Least-squares (LS) algorithms can be derived by several methods. One
approach was presented in the introduction. Another interesting
approach is to connect the parameter identification problem to the sto-
chastic state estimation problem of a linear time varying system. The

parameter 8° can be considered to be the unknown state of the system

6*(t) = 0 (2.3.10)

with output

yo(t) = wi()e*(r) (2.3.11)

Assuming that the right-hand sides of (2.3.10)-(2.3.11) are per-
turbed by zero mean white gaussian noises of spectral intensities

Q e R¥*¥ and 1/g e IR, respectively, the least-squares estimator is
the so-called Kalman filter (Kalman & Bucy [1961])

0

-gPwe;
P =Q-gPww’'P

Q.,8>0 (2.3.12)

Q and g are fixed design parameters of the algorithm. The update
law for 6 is very similar to the gradient update law, with the presence of
the so-called correlation term we;. The matrix P is called the
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covariance matrix and acts in the 6 update law as a time-varying, direc-
tional adaptation gain. The covariance update law in (2.3.12) is called
the covariance propagation equation. The initial conditions are arbitrary,
except that P(0)>0. P(0) is usually chosen to reflect the confidence in
the initial estimate 6(0).

In the identification literature, the least-squares algorithm referred
to is usually the algorithm with Q = 0, since the parameter 6* is

assumed to be constant. The covariance propagation equation is then
replaced by

ar
dt
where g is a constant.

The new expression for P~ ! shows that 4P ~!/dt > 0, so that P !
may grow without bound. Then P will become arbitrarily small in some
directions and the adaptation of the parameters in those directions
becomes very slow. This so-called covariance wind-up problem can be
prevented using the least-squares with forgetting factor algorithm, defined
by

de-hH

= -gPww’P or i ewwl g>0 (2.3.13)

P (- T
i g(-AP + Pww'P)
-1
or d(i;t L o g(=AP -1+ wwT) A\,g>0 (2.3.14)

Another possible remedy is the covariance resetting, where P is
reset to a predetermined positive definite value, whenever A p;,(P) falls
under some threshold.

The normalized least-squares algorithm is defined (cf. Goodwin &
Mayne [1987]) by

0- Pwel 0
= e —rteeeeeeree ) >
& l+ywlPw &7
ap _ _ Pww'P
dt l+ywlPw
dPY wwT
= 2.3.1
o Tar E v wT (P Ty (2.3.13)

Again g,y are fixed parameters and P(0) > 0. The same modifications
can also be made to avoid covariance wind-up.

The least-squares algorithms are somewhat more complicated to
implement but are found in practice to have faster convergence
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properties.

Identifier with Normalized LS Algorithm and Covariance Resetting—
Implementation

The algorithm is the same as for the normalized gradient algorithm,
except

Internal Signals

In addition

P([) € IRZn x2n
Design Parameters
Choose, in addition

o ko> k>0
Normalized LS Algorithm with Covariance Resetting
: Pwe, : PwwTP
= — g ——— P = —g—WHW °
o= 8T Thw E ey wiPw

P0) = P(t,7) = kol >0 wheret, = {¢|Amin(P(t)) <k}
a

2.4 PROPERTIES OF THE IDENTIFICATION ALGORITHMS-
IDENTIFIER STABILITY

2.4.1 Gradient Algorithms
In this section, we establish properties of the gradient algorithm

¢ =6 = -gew g>0 (2.4.1)
and the normalized gradient algorithm

ey w

6=10=-g £7v>0 (2.4.2)

F+ywlw
assuming the linear error equation
ep = ¢Tw - (2.4.3)

Theorems 2.4.1-2.4.4 establish general properties of the gradient
algorithms and concern solutions of the differential equations (2.4.1)-
(2.4.2), with e, defined by (2.4.3). The properties do not require that the
vector w originates from the identifier described in Section 2.2, but only
require that w be a piecewise continuous function of time, to guarantee
the existence of the solutions. The theorems are also valid for vectors w
of any dimension, not necessarily even.
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Theorem 2.4.1 Linear Error Equation with Gradient Algorithm
Consider the linear error equation (2.4.3), together with the gradient
algorithm (2.4.1). Let w:IR, — IR?" be piecewise continuous.
Then (a) e, € L,

® ¢eL,

Proof of Theorem 2.4.1
The differential equation describing ¢ is

b = g
Let the Lyapunov function v = ¢7¢ so that the derivative along the tra-
jectories is given by
v o= -2g(¢pTw)? = -2get < 0
Hence, 0 < v(¢) < v(0) for all t 2 0, so that v, ¢ € Loo. Since v is a
positive, monotonically decreasing function, the limit v(oo) is well-

defined and |
— CO [o's)
=g vdt = |eldt <0
(IR KRk

thatise; ¢ L,. O

Theorem 2.4.2  Linear Error Equation with Normalized Gradient Algo-
rithm

Consider the linear error equation (2.4.3) together with the normalized
gradient algorithm (2.4.2). Let w : R, — IR?" be piecewise continuous.
€
Vi+ywTw

®) éeLy,éelnL

Then (a) € L, NL,

T
© B=—2" cr,nL
L+l well o : *
Proof of Theorem 2.4.2
Let v = ¢ ¢, so that
2 2
po= - <
L+ywlw

Hence, 0 < v(t) < v(0) for all ¢t =20, so that v, ¢, er/Vi+ywTw,
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B8 € Loo. Using the fact that x/l1+x <1 for all x =0, we get that
|qi)| <(g/v)|¢|, and é € L. Since v is a positive, monctonically
decreasing function, the limit v(oo) is well defined and

Qo
—f\':dt < oo
0

implies that ;/V| + ywTw € L. Note that
€1 Vi+ywlw
Vi+ywTw T+l well o

where the first term is in L, and the second in L o’ SO that 8 € L,.
Since

8 =

it follows that ¢ € L,. O

Effect of Initial Conditions and Projection

In the derivation of the linear error equation in Section 2.2, we found
exponentially decaying terms, such that (2.4.3) is replaced by

ei(t) = oT()w() + 1) 2.4.4)
where ¢(¢) is an exponentially decaying term due to the initial conditions

in the observer.

It may also be useful, or necessary, to replace the gradient algorithms by
the algorithms with projection. The following theorem asserts that these
modifications do not affect the previous results.

Theorem 2.4.3 Effect of Initial Conditions and Projection

If the linear error equation (2.4.3) is replaced by (2.4.4) and/or the
gradient algorithms are replaced by the gradient algorithms with
projection,

Then  the conclusions of theorems 2.4.1 and 2.4.2 are valid.

Proof of Theorem 2.4.3
(a) Effect of initial conditions )
Modify the Lyapunov function to



66 ldentification Chapter 2

[0 o]

v = ¢le + % f () dr

!

Note that the additional term is bounded and tends to zero as ¢ tends to
infinity. Consider first the gradient algorithm (2.4.1), so that

v

-2 (8T - 26T w)e - £ &

% 2 <0 (2.4.5)

The proof can be completed as in theorem 2.4.1, noting that
e € LyNL_,and similarly for theorem 2.4.2.

(b) Effect of projection

Denote by z the right-hand side of the update law (2.4.1) or (2.4.2).
When § € 90 and z is directed outside ©, z is replaced by Pr(z) in the
update law. Note that it is sufficient to prove that the derivative of the
Lyapunov function on the boundary is less than or equal to its value
with the original differential equation. Therefore, denote by Zperp the
component of z perpendicular to the tangent plane at 6, so that
z = Pr(z) + Zpyp. Since 6° € ® and © is convex, (67 -6%) z,,,
= ¢"Zpy, 2 0. Using the Lyapunov function v = ¢” ¢, we find that, for
the original differential equation, v = 2¢7z. For the differential equa-
tion with projection, Vp, = 2" Pr(z) = v -2¢" - z,,, so that Vp < v,

fI

-2g(¢Tw +

The proof can again be completed as before. 0O

2.4.2 Least-Squares Algorithms

We now turn to the normalized LS algorithm with covariance resetting,
defined by the following update law

6 = 0 Pwe, 0 (2.4.6)
= = —g— 2,7 > 4.
l+ywlPw
and a discontinuous covariance propagation
dP PwwlpP dp" wwT
- = -g————  or =
dt 1+ywTPw dt L+ywT(P- 1) tw
PWO) = P(t,)) = koI>0
where 1, = {({|Amin(P(1)) < k| <ky). (2.4.7)

This update law has similar properties as the normalized gradient update
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law, as stated in the following theorem.

Theorem 2.44 Linear Error Equation with Normalized LS Algorithm
and Covariance Resetting

Consider the linear error equation (2.4.3), together with the normalized
LS algorithm with covariance resetting (2.4.6)-(2.4.7).

Let w : R, — IR?" be piecewise continuous.
€
(a) B ——
\/?+7WTP w
) ¢ € L,de LyNL_
oTw
T+l well o

Then e LyNL_

(C) B = € L2 N Lw
Proof of Theorem 2.4.4

The covariance matrix P is a discontinuous function of time. Between
discontinuities, the evolution is described by the differential equation in

(2.4.7). We note that d/dt P ' > 0, so that P ~'(t,) - P ~'(t3) = O for all
t; 21,20 between covariance resettings. At the resettings,
P ') =kg'I,sothat P~'(t) = P~ '(ty) = kg I, forall ¢ = 0.

On the other hand, due to the resetting, P(t) = kI for all 1 = 0, so
that

kol = P(t) = ki1 ki'I =2 P (1) 2 kg'I  (2.4.8)

where we used results of Section 1.3.
Note that the interval between resettings is bounded below, since

N4 [ w|?
d 14")’)\min(1))|w|2

-1
2 = g

< & pY (2.4.9)
Y

where we used the fact that x/1+x <1 for all x = 0. Thus, the
differential equation governing P ~' is globally Lipschitz. It also follows
that {1, ) is a set of measure zero.

Let now v = ¢/ P~ ¢, so that
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between resettings. At the points of discontinuity of P,

vt ) =) = oTPTN) - P < 0

It follows that OSy(t)Sv(O), for all t 20, and, from the bounds on P,
we deduce that ¢,¢,8 € Loo. Also

[0 o}

. . . €]
- f vdt < oo implies —————— € L,
0 Vi+ywlPw
Note that
o"w _ oTw V1i+yw P w (2.4.10)
Wil ViegwTpw  1HIwl o o

. e
¢ = -¢g ’ Pw 2.4.11)

Vi+ ywTPw  Vi+ ywTPw
where the first terms in the right-hand sides of (2.4.10)-(2.4.11) are in
L, and the last terms are bounded. The conclusions follow from this
observation. 0O

Comments

a) Theorems 2.4.1-2.4.4 state general properties of differential equa-
tions arising from the identification algorithms described in Section 2.3.
The theorems can be directly applied to the identifier with the structure
described in Section 2.2, and the results interpreted in terms of the
parameter error ¢ and the identifier error e,.

b)  The conclusions of theorems 2.4.1-2.4.4 may appear somewhat
weak, since none of the errors involved actually converge to zero. The
reader should note however that the conclusions are valid under very
general conditions regarding the input signal w. In particular, no
assumption is made on the boundedness or on the differentiability of w.
¢) The conclusions of theorem 2.4.2 can be interpreted in the follow-
ing way. The function 8(¢) is defined by

¥ () w(t) e(t)
8(t) = _ 4.
Lrliwll, ~ T+iwi (2:412)

so that

lew)] = [¢TOw®)| = [BeR well o +BO)] (2.4.13)

The purpose of the identification algorithms is to reduce the parameter
error ¢ to zero or at least the error e;. In (2.4.12), 8 can be interpreted
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as a normalized error, that is e, normalized by || w,|| . In (2.4.13),’6[
can be interpreted as the gain from w to #"w. From theorem 2.4.2, this
gain is guaranteed to become small as 1 — oo in an L; sense.

2.4.3 Stability of the Identifier

We are not guaranteed the convergence of the parameter error ¢ to zero.
Since only one output y, is measured to determine a vector of unknown
parameters, some additional condition on the signal w' (see Section 2.5)
must be satisfied in order to guarantee parameter convergence. In fact,
we are not even guaranteed the convergence of the identifier error e; to
zero. This can be obtained under the following additional assumption

(A3) Bounded Output Assumption
Assume that the plant is either stable or located in a control

loop such that r and y, are bounded.

Theorem 2.4.5  Stability of the Identifier
Consider the identification problem, with (A1)-(A3), the identifier struc-
ture of Section 2.2 and the gradient algorithms (2.4.1), (2.4.2) or the nor-
malized LS algorithm with covariance resetting (2.4.6), (2.4.7).
Then  the output error e, € LyNL_, e, >0 as t - oo and the
parameter error d),é} e L oo
The derivative of the parameter error 6 e LN L and

d'>—>0ast—>oo‘

Proof of Theorem 2.4.5

Since r and y, are bounded, it follows from (2.2.16), (2.2.17), and the
stability of A, that w and w are bounded. By theorems 2.4.1-2.4.4, ¢
and ¢ are bounded so that e, and é, are bounded. Also e; € L,, and
by corollary 1.2.2, e, é; € Loo and e; € L, implies that e; - 0 as
t - co. Similar conclusions follow directly for ¢. O

Regular Signals

Theorem 2.4.5 relies on the boundedness of w, w, guaranteed by (A3). It
is of interest to relax this condition and to replace it by a weaker condi-
tion. We will present such a result using a regularity condition on the
regressor w. This condition guarantees a certain degree of smoothness
of the signal w and seems to be,fundamental in excluding pathological
signals in the course of the proofs presented in this book. In discrete
time, such a condition is not necessary, because it is automatically
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verified. The definition presented here corresponds to a definition in
Narendra, Lin, & Valavani [1980].

Definition Regular Signals
Letz:IR, - IR" such that z, z € L.

z is called regular if, for some k|, k; = 0

2] < killzll o + k2 forall: =0 (2.4.14)

The class of regular signals includes bounded signals with bounded
derivatives, but also unbounded signals (e.g., e'). It typically excludes

signals with “increasing frequency” such as sin(e'). We will also derive
some properties of regular signals in Chapter 3. Note that it will be
sufficient for (2.4.14) to hold everywhere except on a set of measure
zero. Therefore, piecewise differentiable signals can also be considered.

This definition allows us to state the following theorem, extending
the properties derived in theorems 2.4.2-2.4.4 to the case when w is reg-
ular.

Proposition 2.4.6
Let ¢, w : IR, — IR*" be such that w,w e L,,and b,b € L.
If (a) w is regular
r
by 8= —2% <1,
] well o

Then B,8 e Lw,andﬁ—»Oast - 0.

Proof of Proposition 2.4.6

Clearly, 8 € Loo and since ﬁ,B € Loo, 8 e L, implies that 8 — 0 as
t - oo (corollary 1.2.2), we are left to show that B e Loo.
We have that

| 8 SIW » |+|¢T7w|

L+ well o L] well o

oTw  @rdiwll ) |

Lrllwill e T+ well o

(2.4.15)

The first and second terms are bounded, since qs,d; € Loo and w is reg-
ular. On the other hand
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d _ |4
|Gl | = |4 sup 1w
i vo| s [ rol
< | £ a
< Id[ wo)l | < Idl w(t) (2.4.16)

The regularity assumption then implies that the last term in (2.4.15) is
bounded, and hence 8 € Loo. 0

Stability of the Identifier with Unstable Plant
Proposition 2.4.6 shows that when w is possibly unbounded, but
nevertheless satisfies the regularity condition, the relative error
er/ 1+ wl , orgain from w— ¢7w tends to zero as - oo .

The conclusions of proposition 2.4.6 are useful in proving stability
in adaptive control, where the boundedness of the regressor w is not
guaranteed a priori. In the identification problem, we are now allowed

to consider the case of an unstable plant with bounded input, that is, to
relax assumption (A3).

Theorem 2.4.7  Stability of the Identifier—Unstable Plant

Consider the identification problem with (Al) and (A2), the identifier
structure of Section 2.2 and the normalized gradient algorithm (2.4.2), or
the normalized LS with covariance resetting (2.4.6), (2.4.7).

o'w

Then  The normalized error 8 = ——
] well o

eL;_r“\Loo, 8—0 as
! > oo andqs,di € Loo.

Proof of Theorem 2.4.7

It suffices to show that w is regular, to apply theorem 2.4.2 or 2.4.4 fol-
lowed by proposition 2.4.6. Combining (2.2.16)-(2.2.18), it follows that

A 0 by
w(t) = . , w(t) + r(t) (2.4.17)
b)‘a‘ A+ b)\b‘ 0

Since r is bounded by (A2), (2.4.17) shows that w is regular. 0O

2.5 PERSISTENT EXCITATION AND EXPONENTIAL PARAME-
TER CONVERGENCE

In the previous section, we derived results on the stability of the
identifiers and on the convergence of the output error ¢, = 87w ~ 0w =
¢'w to zero. We are now concerned with the convergence of the
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parameter 6 to its nominal value 6*, that is the convergence of the
parameter error ¢ to zero.

The convergence of the identification algorithms is related to the
asymptotic stability of the differential equation

o(1) = -gw(®)wT(t)e(t) g>0 (2.5.1)
which is of the form

é(t) = —A(t)(t) (2.5.2)

where 4(t) e R¥**?% is a positive semidefinite matrix for all . Using
the Lyapunov function v = ¢7¢

v=-¢"d+47)¢

When A(¢) is uniformly positive definite, with A pin(4 + A7) = 2, then
v < - 2av, which implies that system (2.5.2) is exponentially stable with
rate «. For the original differential equation (2.5.1), such is never the
case, however, since at any instant the matrix w(t)w7(¢) is of rank 1. In
fact, any vector ¢ perpendicular to w lies in the null space of ww” and
results in ¢ = 0. However, since w varies with time, we can expect ¢ to

still converge to O if w completely spans IR*" as ¢ varies. This leads
naturally to the following definition. For consistency, the dimension of
w is assumed to be 2, but it is in fact arbitrary.

Definition Persistency of Excitation (PE)

A vector w : IR, — IR2" is persistently exciting (PE) if there exist a;, ay,
8 > 0 such that
to+é
al = j wrywl(r)dr = oI  foralltg=0 (2.5.3)
fo
Although the matrix w(r)w7(7) is singular for all 7, the PE condi-
tion requires that w rotates sufficiently in space that the integral of the
matrix w(r)w'(7) is uniformly positive definite over any interval of
some length 4.
The condition has another interpretation, by reexpressing the PE
condition in scalar form
to+é

w2 [WI@x)dr 2 @ foralligz0,|x| =1 (254)
Ly
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which appears as a condition on the energy of w in all directions.
With this, we establish the following convergence theorem.

Theorem 2.5.1 PE and Exponential Stability

Let w : R, — IR?" be piecewise continuous.
If w is PE
Then  (2.5.1) is globally exponentially stable

Comments

The proof of theorem 2.5.1 can be found in various places in the litera-
ture (Sondhi & Mitra [1976], Morgan & Narendra [1977a&b], Anderson
[1977], Kreisselmeier [1977]). The proof by Anderson has the advantage
of leading to interesting interpretations, while those by Sondhi & Mitra
and Kreisselmeier give estimates of the convergence rates.

The idea of the proof of exponential stability by Anderson [1977] is
to note that the PE condition is a UCO condition on the system

6*) = 0
() = wi@)e* ) (2.5.5)

which is the system described earlier in the context of the least-squares
identification algorithms (cf. (2.3.10), (2.3.11)). We recall that the
identification problem is equivalent to the state estimation problem for
the system described by (2.5.5). We now find that the persistency of
excitation condition, which turns out to be an identifiability condition, is
equivalent to a uniform complete observability condition on system
(2.5.5).

The proof of theorem 2.5.1 uses the following lemma by Anderson
& Moore [1969], which states that the UCO of the system {C, 4] is
equivalent to the UCO of the system with output injection [C, 4 + KC].
The proof of the lemma is given in the Appendix. It is an alternate
proof to the original proof by Anderson & Moore and relates the eigen-
values of the associated observability grammians, thereby leading to esti-
mates of the convergence rates in the proof of theorem 2.5.1 given after-
ward.

Lemma 2.5.2 Uniform Complete Observability Under Output Injection
Assume that, for all § > 0, there exists k; = 0 such that, for all 5 = 0

to+d !

[ 1K@ < & (2.5.6)
fo
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Then  the system [C, A] is uniformly completely observable if and

only if the system [C, A + KC] is uniformly completely observ-
able.

Moreover, if the observability grammian of the system C
satisfies

B2l = N(tg,tg+0) = By1

then the observability grammian of the system [4 + KC\C

satisfies these inequalities with identical 6 and

By = Bi/(1+Vk;B,)* (2.5.7)
By = Brexp(ksB,) (2.5.8)

Proof of Lemma 2.5.2 in Appendix.

Proof of Theorem 2.5.1

Let v = ¢T ¢, so that v
(2.5.1). Forallt;=0

to+6 to+4é

jv'df -2g j(wT(T)qs(r))ZdT (2.5.9)
o

o

By the PE assumption, the system [0)w7(z)] is UCO. U output
injection with K(t) = -~ gw(t), the system becomes [ gw(t)w(t)

wT(1)], with

-2g(wT¢)? < 0 along the trajectories of

]

to+d

[ 1ew(o)|2dr
{o

[

ks

to+d

gir jw(f)wT(f)dr < 2ng?B, (2.5.10)

o

]

where 2 is the dimension of w. By lemma 2.5.2, the system with out-
put injection is UCO. Therefore, for all t5 = 0

to‘f’é

. - 286,
Vdr S ———————— | ¢(lp)|? (2.5.11)
;[ (1+V2ngs,)? |9(to)]

Exponential convergence then follows from theorem 1.5.2. O
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Exponential Convergence of the Identifier
Theorem 2.5.1 can be applied to the identification problem as follows.

Theorem 2.5.3 Exponential Convergence of the Identifier

Consider the identification problem with assumptions (Al1)-(A3), the

identifier structure of Section 2.2 and the gradient algorithms (2.4.1) or

(2.4.2), or the normalized LS algorithm with covariance resetting (2.4.6),

2.4.7). ,

If w is PE

Then  the identifier parameter 6 converges to the nominal parameter
6* exponentially fast.

Proof of Theorem 2.5.3

This theorem follows directly from theorem 2.5.1. Note that when w is
bounded, w PE is equivalent to w/V| + y wTw PE, so that the exponen-
tial convergence is guaranteed for both gradient update laws. The
bounds on P obtained in the proof of theorem 2.4.4 allow us to extend
the proof of exponential convergence to the LS algorithm. 0O

Exponential Convergence Rates
Estimates of the convergence rates can be found from the results in the
proof of theorem 2.5.1. For the standard gradient algorithm (2.4.1), for
example, the convergence rate is given by

1
In 2ga, (2.5.12)

€
26 1 -
(1 +V2nga, )?

o =

where g is the adaptation gain, «;, a;, and & come from the PE
definition (2.5.3) and »n is the order of the plant. The influence of some
design parameters can be studied with this relationship. The constants
ay, @, and & depend in a complex manner on the input signal r and on
the plant being identified. However, if r is multiplied by 2, then a4, «;
are multiplied by 4. In the limiting case when the adaptation gain g or
the reference input r is made small, the rate of convergence o — g a,/é.
In this case, the convergence rate is proportional to the adaptation gain
g and to the lower bound in the PE condition. Through the PE condi-
tion, it is also proportional to the square of the amplitude of the refer-
ence input r. This result will be found again in Chapter 4, using averag-
ing techniques.
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When the adaptation gain and reference input get sufficiently large,
this approximation is no longer valid and (2.5.12) shows that above
some level, the convergence rate estimate saturates and even decreases
(cf. Sondhi & Mitra [1976]).

It is also possible to show that the presence of the exponentially
decaying terms due to initial conditions in the observer do not affect the
exponential stability of the system. The rate of convergence will, how-
ever, be as found previously only if the rate of decay of the transients is
faster than the rate of convergence of the algorithm (cf. Kreisselmeier
[1977)).

2.6 MODEL REFERENCE IDENTIFIERS—SPR ERROR EQUA-
TION

2.6.1 Model Reference Identifiers

In Section 2.2, we presented an identifier structure which led to a linear
error equation. This structure was based on a convenient reparametriza-
tion of the plant. It is worth pointing out that there exist several ways to
reparametrize the plant and many error equations that may be used for
identification. The scheme discussed in Sections 2.2-2.3 is generally
known as an equation error identifier. Landau [1979] discussed an
interesting alternative called the output error approach. The resulting
scheme has significant advantages in terms of noise bias, although its sta-
bility may only be guaranteed from prior knowledge about the plant.
Another approach, which we will call the model reference approach (cf.
Luders & Narendra [1973]) is discussed now. We start from an arbitrary

reference model, with transfer function M satisfying the following condi-
tions
(A3) Reference Model Assumptions
The reference model is a SISO LTI system, described by a
transfer function

Aim(S)
Am(s)
where 7A,,(s), c?,,,(s) are monic, coprime polynomials of degrees /
and k < n, respectively. Assume that the reference model is

strictly proper, but that its relative degree is no greater than the
relative degree of the plant, that is 1 <k -/ <n-m. The

reference model is stable, i.e. d,, is Hurwitz.

M) = ky

(2.6.1)

A simple choice of M is 1/s + 1. As previously, the plant is assumed to
satisfy assumptions (A1) and (A2) (cf. Section 2.1).
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Consider now the representation of the plant of Figure 2.3.

T
—ree ]

Yp

>®2
"
z>

*

»olo>

Figure 2.3: Model Reference Reparameterization

Although we will have to show (see proposition 2.6.1) that the plant can
indeed be represented this way, we may already interpret it as being
obtained by modifying the reference model through feedback and feed-
forward action, so as to match the plant transfer function. Alternatively,
we might interpret this structure as a more general parametrization of
the plant than the one in Figure 2.1. In that case, the model transfer
function was simply the identity.

The polynomial X is a monic, Hurwitz polynomial of degree n - 1.
It serves a similar purpose in Section 2.2, and although the degree is
now n — 1, instead of n in Section 2.2, the following derivations can also
be carried out with a degree equal to n, with only minor adjustments
(the reference model may then be assumed to be proper and not strictly

proper). We will have to require that the zeros of ):(s) contain those of
Aim(s) and therefore we write

NS) = Am(s)No(s) (2.6.2)

where X o(s) is a monic, Hurwitz polynomial of degree n -/ - 1.

The polynomials @°(s), b*(s) in Figure 2.3 have degrees at most
n — 1 and serve similar purposes as before. Therefore, we start with the
following proposition.

Proposition 2.6.1
There exist unique @, b * such that the transfer function from r — y, in
Figure 2.3 is P (s).

Proof of Proposition 2.6.1
Existence
The transfer function from r — y,’'in Figure 2.3 is given by
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Ky A
Jo_ & d @k
7 N Bm Bt Ndwe knhinb”
m ~ -~
d, X\
kp,d"
= " (2.6.3)

d, - (2.6.4)

The problem is therefore to find polynomials a°, b* of degrees at most
n ~ 1 that satisfy (2.6.4).
A solution can be found by inspection. Divide Xody, by (3,,: denote

by § the quotient of degree k -/ ~ 1 and let k, b* be the remainder of
degree n — 1. In other words, let

Nodw = Gdy + kpb® (2.6.5)
This defines b * appropriately. Equality (2.6.4) is satisfied if ¢* is defined
by
ae ky ..
a = T qn, (2.6.6)
m

The degree of the polynomial in the right-hand side is m+k -/ -1,

which is at most n ~ 1 by assumption (A3), so that the degree require-
ments are satisfied.

Uniqueness
Assume that there exist 4" + 64, b* +0b satisfying

Kodu- k(b +85) = 22 g, 4224) (2.6.7)
/4 np
Subtracting (2.6.4) from (2.6.7), we find that
_z_% - _kpgi = =P (2.6.8)
14
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Recall that 7, ﬁp are assumed to be coprime, while the degree of c?p and
5b are n and at most n - 1, respectively. Therefore, equation (2.6.8)
cannot have any solution. 0O

Identifier Structure
The identifier structure is obtained in a similar way as in Section 2.2.
Welet A € R"-1*7-1 b e IR""! in controllable canonical form such

that det (s — A) = x (s)and

GI-A)y'b = —— | (2.6.9)

>:(s)

sn—Z

Given any plant and model transfer functions satisfying (Al) and (A3),
we showed that there exist unique polynomials d*(s), b*(s). We now let

a$, b € Randa*,b* ¢ R""! such that

____d:(s) = af + a* (sI -A)~ by

A(s)

bXs) _ pa s b (s - 8) by (2.6.10)
A(s)

We define the observer through
W = Aw® + by
w® = Aw@ + by, (2.6.11)

where w,w® e RR"-! and the initial conditions are arbitrary. The
regressor vector is now

W) = [r0, w0, 0, WO | e R¥ 2612
and the nominal parameter is
6 = [aa,a",bg,b*’] e R (2.6.13)

Using proposition 2.6.1, we find that any plant can be represented
uniquely as

) = B (o wo) (2.6.14)
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Rigorously, one should add an exponentially decaying term due to the
initial conditions in the observer and in the reference model transfer
function, but we will neglect this term for simplicity.

In similarity with (2.6.14), the identifier output is defined to be

ylt) = B [ao(@)r(e) + aT@we) + bo(t)yp(0)
+ bT(t)w(z)(t)]
=M [BT(t)w(t)] (2.6.15)

where

67(1) := [ao(t),aT(t),bo(t),bT(t)] e R (2.6.16)
is the vector of adaptive parameters. We define the parameter error

#(t) = 6(t)-06* (2.6.17)
so that the identifier error

ei(t) = yi(t)-yp(t) (2.6.18)

is also given, for the purpose of the analysis, by

ety = M [¢T(t)w(t)] (2.6.19)

The error equation is linear in the paramcter error, but it now

involves the dynamics of the transfer function M. We will show in the
next section that the same gradient algorithm as used previously can still
be used for identification, provided that the following additional
assumption is satisfied.

(Ad) Positive Real Model
M is strictly positive real.

We will define and discuss this assumption in the next section. The
overall identifier structure is represented in Figure 2.4 and we summar-
ize the implementation of the algorithm hereafter.

Model Reference Identifier—Implementation
Assumptions

(A1)-(A4)
Data

n, upper bound on n - m (e.g., n)
Input
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Figure 2;4: Model Reference Identifier Structure

r(t), y(t) e R
Output
(1), yit) e R
Internal Signals
w(t) e R [wi(r), w@(t) e R""!]
6(1) e R* [ag(t) e R, a(t) € R"" !, bot) € R, b(t) € R*7]

yi(t), es(t) e R
Initial conditions are arbitrary.
Design Parameters

« M satisfying (A3)-(A4)
e« Ae R*-1xn-1 p e R"~!in controllable canonical form such
that det (sI ~ A) is Hurwitz, and contains the zeros of Am(S).
e g>0
Identifier Structure
wh = Aw® 4+ byr
w® = Aw®+ by,
87 = [ag,aT, by, b7]
wl = [r, W(])r’ Vo w(2)T]
i = M(6Tw) ,
ey = Yi=)Vp
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Gradient Algorithm

0 = -gew
a

Comments

The model reference identifier is an alternative to the equation error
scheme discussed previously. It may result in savings in computations.
Indeed, the state variable filters are of order n - 1, instead of n previ-
ously. If the transfer function M is of order 1, the realization requires
one less state. The presence of M , however, precludes the use of the
least-squares algorithms, which are usually faster. We will also show in

Chapter 4 how the transfer function M influences the convergence pro-
perties of the gradient algorithm.

2.6.2 Strictly Positive Real Error Equation and Identification Algorithms

In Section 2.6.1, we encountered a more general error equation, which
we will call the strictly positive real (SPR) error equation

et) = 5 (70w

where M is a strictly positive real transfer function. This error equation
is still linear, but it now involves additional dynamics contained in M.
In this section, we will establish general properties involving this error
equation. For uniformity with previous discussions, we assume that
w: R, - IR¥, but the dimension of w is in fact completely arbitrary.

The definitions of positive real (PR) and strictly positive real (SPR)
functions originate from network theory. A rational transfer function is
the driving point impedance of a passive network if and only if it is PR.
Similarly, it is the driving point impedance of a dissipative network if
and only if it is SPR. The following definitions are deduced from these
properties,

Definition  Positive Real (PR) and Strictly Positive Real (SPR) Func-
tions

A rational function M (s) of the complex variable s = ¢+ jw is positive
real (PR), if M(s) € R for all ¢ € R and Re(M (o + jw)) = 0 for all

0>0, w2 0. Itis strictly positive real (SPR) if, for some ¢ > 0, M(s —€)
is PR.

It may be shown (cf. loannou & Tao [1987)) that a strictly proper
transfer function M (s) is SPR if and only if
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« M (s) is stable
« Re(M(jo)p>0, forallw =0
¢ lim w?Re(M(jo)p0

w - QO
For example, the transfer function

S+¢
(s+a)(s+b)

is SPR if and only ifa>0, 6 >0, a + b >¢c>0.

SPR transfer functions form a rather restricted class. In particular,
an SPR transfer function must be minimum phase and its phase may
never exceed 90°. An important lemma concerning SPR transfer func-
tions is the Kalman-Yacubovitch-Popov lemma given next.

M(s) =

Lemma 2.6.2 Minimal Realization of an SPR Transfer Function

Let [4,b,cT] be a minimal realization of a strictly proper, stable,
rational transfer function M (s). Then, the following statements are
equivalent

(a) M(s) is SPR

(b) There exist symmetric positive definite matrices P, Q, such that
PA +A™P = -Q
Ph = ¢ (2.6.20)

Proof of Lemma 2.6.2 cf. Anderson & Vongpanitlerd [1973].

SPR Error Equation with Gradient Algorithm
A remarkable fact about SPR transfer functions is that the gradient
update law

o(t) = () = -ge()w(t) g>0 (2.6.21)

has similar properties when e; is defined by the SPR error equation
(2.6.19), and when e, is defined by the linear error equation (2.4.3).
Note that in the case of the SPR error equation, the algorithm is not the
true gradient anymore, although we will keep using this terminology for
the similarity.

Using lemma 2.6.2, a state-space realization of M (s) with state e,
can be obtained so that

ém(t) = Aen(t) + boT(1)w(1)
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eit) = cT(t)en(t)

(1) = —-gcle ()w(t) g>0 (2.6.22)
N
(&) -

Theorem 2.6.3 SPR Error Equation with Gradient Algorithm

Let w: IR, > IR¥ be piecewise continuous. Consider the SPR error

equation (2.6.19) with M (s) SPR, together with the gradient update law
(2.6.21). Equivalently, consider the state-space realization (2.6.22)

where [4 , b, ¢T] satisfy the conditions of lemma 2.6.2.
Then

(a) em; €1 € Ly
(b) em!ela¢ € Lw
Proof of Theorem 2.6.3

Let P, Q be as in lemma 2.6.2 and v = gel, Pe,, + ¢”¢. Along the tra-
jectories of (2.6.22)

v

i

gel PAe,, + gel, Pbo™w + gel, AT Pe,,
+ g¢TwbT Pe,, —2gcTe, ¢o™w

-gehQey < 0 (2.6.23)

where we used (2.6.20). The conclusions follow as in theorem 2.4.1,
since P and Q are positive definite. 0O

]

Modified SPR Error Equation

Thc nprmalized gradient update law presented for the linear error equa-
tion is not usually applied to the SPR error equation. Instead, a
modified SPR error equation is considered

et) = M[dar(z)w(t)—7wT(t)w(t)e,(t)] v>0  (2.6.24)

wr}ere ~ is a constant. The same gradient algorithm may be applied with
this error equation, so that in state-space form

ent) = Aen@) + b [#TWWD) =1 W O W) Ten(t)]
et) = CTem(t)
(1) = -gcTen(t)w(t) g,7>0 (2.6.25)
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Theorem 2.6.4 Modified SPR Error Equation with Gradient Algorithm

Let w : R, — IR?" be piecewise continuous. Consider the modified SPR

error equation (2.6.24) with M(s) SPR, together with the gradient
update law (2.6.21). Equivalently, consider the state-space realization

(2.6.25), where [4 , b, ¢T] satisfy the conditions of lemma 2.6.2.
Then

(a) €m> el)d; € L2
(b) ems €1, ¢ € L

Proof of Theorem 2.6.4

Let P, Q be as in lemma 2.6.2 and v = gy, Pe,, + &7 ¢. Along the trajec-
tories of (2.6.25)

v = -gelQen-28y(ew) (ew) < 0 (2.6.26)

Again, it follows that e, , e, ¢ are bounded, and e,,, ¢; € L,. More-
over, it also follows now that e;w € L, so that ¢ € L, O

2.6.3 Exponential Convergence of the Gradient Algorithms with SPR
Error Equations

As stated in the following theorem, the gradient algorithm is also
exponentially convergent with the SPR error equations, under the PE
condition.

Theorem 2.6.5 Exponential Convergence of the Gradient Algorithms with
SPR Error Equations

Let w: R, — IR?", Let [4, b, ¢T] satisfy the conditions of lemma 2.6.2.
If wisPEand w, w € Loo
Then  (2.6.22) and (2.6.25) are globally exponentially stable.

The proof given hereafter is similar to the proof by Anderson
[1977] (with some significant differences however).. The main condition
for exponential convergence is the PE condition, as required previously,
and again, the main idea is to interpret the condition as a UCO condi-
tion. The additional boundedness requirement on w guarantees that PE

is not lost through the transfer function M (cf. lemma 2.6.7 hereafter).
It is sufficient that the boundedness conditions hold almost everywhere,
so that piecewise differentiable signals may be considered.

B
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Auxiliary Lemmas on PE Signals

The following auxiliary lemmas will be useful in proving the theorem.
Note that the sum of two PE signals is not necessarily PE. On the other
hand, an L, signal is necessarily not PE. Lemma 2.6.6 asserts that PE is
not altered by the addition of a signal belonging to L,. In particular,
this implies that terms due to initial conditions do not affect PE. Again,
we assume the dimension of the vectors to be 2x, for uniformity, but the
dimension is in fact arbitrary.

Lemma 2.6.6 PE and L, Signals
Let w, e : R, — IR?" be piecewise continuous.
If wis PE
e € L2
Then w+ eis PE.
Proof of Lemma 2.6.6 in the Appendix.

Lemma 2.6.7 shows that PE is not lost if the signal is filtered by a
stable, minimum phase transfer function, provided that the signal is
sufficiently smooth.

Lemma 2.6.7 PE Through LTI Systems
Let w: R, - R?".
If wisPEandw,WeLoo
H is a stable, minimum phase, rational transfer function
Then  H(w)is PE.
Proof of Lemma 2.6.7 in the Appendix.
We now prove theorem 2.6.5.

Proof of Theorem 2.6.5

As previously, let v = gel Pe,, + ¢T¢, so that for both SPR error equa-
tions

o+ o+

f vdr £ -g [ el Qe,, dr

o 0
to+d

Amin(@) [etdr <o (2.6.27)
ty

le|?

By theorem 1.5.2, exponential convergence will be guaranteed if, for
some a3 > 0

s -g
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lo+d
f et(r)dr = a3 (| en(to)] 24 | (20)| 2) (2.6.28)
to
for all tg, en(to), #(to)-

Derivation of 2.6.28: This condition can be interpreted as a UCO condi-
tion on the system

b = Aey + bpTw
¢ = -gclenw
e, = cTey (2.6.29)

An additional term - by w”wcTe,, is added in the differential equation
governing e, in the case of the modified SPR error equation. Using
lemma 2.5.2 about UCO under output injection, we find that inequality
(2.6.28) will be satisfied if the following system

bm = Aey, + bpTw
¢ =0
ey = cley (2.6.30)
is UCO. For this, we let
0 bywTw
K = or K = (2631)
gw gw

for the basic SPR and modified SPR error equations, respectively. The
condition on X in lemma 2.5.3 is satisfied, since w is bounded.

We are thus left to show that system (2.6.30) is UCO, i.e. that

{
ei(t) = cTe' e, (o) + cheA("’)b wl(r)dr ¢(to)
to

x1() + x2(2) (2.6.32)

satisfies, for some 8;, 8,6 >0

2 (1 emtto) * + 1 90t0)] 2]
to+o

> j el (r)dr
to
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> 1 [lenttol? + 180012 (2.6.33)

for all g, e, (t0), #(l0)-
Derivation of 2.6.33: By assumption, w is PE and w, w € Loo . There-
fore, using lemma 2.6.7, we have that, for all 75 > 0, the signal

t
wilt) = [cTet =D bw(r)dr (2.6.34)
o

is PE. This means that, for some a;, a3, ¢ > 0

tiy+o
ar |6(to)2 = [ x}(r)dr 2 a| (o)l (2.6.35)
f
for all L2ty 0 and (t)(to).
On the other hand, since A is stable, there exist v;, v2 > 0, such
that

(o o]
m

x}r)dr < vilemto)2e P (2.6.36)

tg+ma

for all tg, en(ty) and an arbitrary integer m > 0 to be defined later.
Since [4 }c”] is observable, there exists y3(mo) > 0, with y3(m o)
increasing With m ¢ such that

tgtmo

[ xtydr = vimo)|enlto)l? (2.6.37)

ty
for all ¢q, e,,(tg) and m > 0.
Let n > 0 be another integer to be defined and let 6 = (m +n)o.

Using the tmengle-ineguality Fo ¢ b [ PY 4 (‘\. b )" » &¥1. bt

tog+d to+ma log+mo

felz(T)dT ?_.!f Xlz(T)dT— f x%(r)d‘r
lto

1) ty

to+d tog+9
] 2 dr - 2 d
e X3 (r)dr Xi(r)dr
lo+mo to+mo

> byy(m o) | en(to)| 2 - man| 6(to)|?

%
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[] - o
wnay |62 = vie 2 lem(t)]2 (2.6.38)

1

Let m be large enough to get

dyima) - me " = yyma)/ (2.6.39)
and n suﬂicient'l‘;large to obtain 7‘,
Ao, —may 2 o (2.6.40)
Further, define v
By = min (ar, v3(m o)/ (2.6.41)

The lower inequality in (2.6.33) follows from (2.6.38), with 8, as defined,
while the upper inequality is easily found to be valid with

B, = max (y, (m+n)ay) (2.6.42)
0O

Comments

a) Although the proof of theorem 2.6.5 is somewhat long and tedious, it
has some interesting features. First, it relies on the same basic idea as
the proof of exponential convergence for the linear error equation (cf.
theorem 2.5.1). It interprets the condition for exponential convergence
as a uniform complete observability condition. Then, it uses lemma
2.5.2 concerning UCO under output injection to transform the UCO
condition to a UCO condition on a similar system, but where the vector
¢ is constant (cf. (2.6.30)). The UCO condition leads then to a PE con-
dition on a vector wy, which is a filtered version of w, through the LTI
system M (s).

b) The steps of the proof can be followed to obtain guaranteed rates of
exponential convergence. Although such rates would be useful to the
designer, the expression one obtains is quite complex and examination
of the proof leaves little hope that the estimate would be tight. A more
successful approach is found in Chapter 4, using averaging techniques.

¢) The results presented in this section are very general. They do not
rely on the structure of the identifier, but only on the SPR error equa-
tion (2.6.19). We leave it to the reader to specialize these results and
obtain stability and convergence properties of the model reference
identifier of Section 2.6.1.
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2.7 Frequency Domain Conditions for Parameter Convergence

Theorems 2.5.3 and 2.6.5 give a condition on the regressor vector w,
namely that w be PE, to guarantee exponential convergence of the
parameter error. The difficulty with the PE condition is that it is not an
explicit condition on the reference input r. In this section, we give fre-
quency domain conditions on the input r to guarantee that w is PE.

The result of this section will make precise the following intuitive
argument: assume that the parameter vector does converge (but not
necessarily to the nominal value). Then, the plant loop is “asymptoti-
cally time-invariant.” If the reference input contains frequencies w,, . . .
, wk, we expect that y, and y; will too. Since y; - y, as ¢t - co, the
asymptotic identifier transfer function must match the plant transfer
function at § = jw;, ..., jwi. If k is large enough, this will imply that
the asymptotic identifier transfer function is precisely the plant transfer
function and, therefore, that the parameter error converges to zero.
Thus, we will show that the reference signal must be “rich enough,” that
is, “contains enough frequencies,” for the parameter error to converge to
zero. Roughly speaking, we will show

A reference input r results in parameter error convergence to

zero unless its spectrum is concentrated on k < 2n points,

where 27 is the number of unknown parameters in the adap-

tive scheme.

We will also discuss partial parameter convergence when the input is not
sufficiently rich. We will use the results of generalized harmonic analysis
developed in Section 1.6 and restrict our attention to stationary refer-
ence signals.

2.7.1 Parameter Convergence

From the definition of the regressor w in (2.2.16), we see that w is the
output of a LTI system with input r and transfer function

(sI —A) "' b,

Hydls) = (sI - A)~1 b P(s)

(2.7.1)

We will assume that the input r is stationary and that P is stable.
Then, by the linear filter lemma (proposition 1.6.2), it follows that w is
also stationary, that is has an autocovariance. For stationary signals,
persistency of excitation is directly related to the positive definiteness of
the autocovariance, as stated in the following proposition. Note that
R, (0) is a symmetric positive semidefinite matrix.
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Proposition 2.7.1 PE and Autocovariance
Let w(¢) € IR?" be stationary.
(a) w is PE if and only if (b) R, (0) > 0.

Proof of Propesition 2.7.1

(a) implies (b)

From the PE condition on w, we have that for all ¢ € R*" and for any
positive integer k

to+ ks
L T 2 > 2.2 2.7.2
kéi(w<r)c>df_5|cl 27.2)

Hence, forall T =4

to+ T

1 T 2 -5 o,
T i Wiryerdr =2 == —|c| (2.7.3)
Since w has an autocovariance
to+ T
lim & [ W(r)eldr = ¢ R, (O)¢ (2.7.4)
T >0 T to

Combining (2.7.3) and (2.7.4) yields that R,(0) = % I1>0.

(b) implies (a)
From the definition of autocovariance, for all ¢ > 0, there exists § such
that

to+d

|5 [ 0T @erdr-cTR,©Oc | < (2.7.5)
fo
Therefore
1o+
S [ @R dr = Ain Ry (O] ] ¢ 2.7.6)
to

which implies PE for e sufficiently small. O

We mady relate the PE condition to the frequency content of w
through the formula

Ry(0)'= [S,(dw) 2.7.7)

where S, (dw) is the spectral measure of w. In turn, using the linear
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filter lemma (proposition 1.6.2) and (2.7.7), we see that

Ry(0) = [Hy (jo)Hy,(je) S, (dw) (2.7.8)

The expression (2.7.8) allows us to relate the frequency content of r to
the persistency of excitation of w. This leads us to the following
definition.

Definition Sufficient Richness of Order k

A stationary signal r : R, - R is called sufficiently rich of order k, if the

support of the spectral density of r, namely, S, (dw) contains at least k
points.

Comment

Note that a single sinusoid in the input contributes 2 points to the spec-
trum: at +wp and at —wy. On the other hand, a DC signal contributes
only one point in the support of the spectral density.

Theorem 2.7.2 PE and Sufficient Richness

Let w(¢) € IR?" be the output of a stable LTI system with transfer func-
tion H,,(s) and stationary input r(¢). Assume that H,,(jw,), . . . ,

H,,(jwy,), are linearly independent on €% for all w,, w,, . . . ,
Wy, € R.

(a) w is PE if and only if (b) r is sufficiently rich of order 2n.

Proof of Theorem 2.7.2

By proposition 2.7.1, (a) is equivalent to R,(0)>0.

(a) implies (b)

We prove this by contradiction. Assume that r is not sufficiently rich of

order 2n, that is the support of S,(dw) is w;, . . ., w, with k < 2n.
Then, from (2.7.8), it follows that

k
Ru(0) = X Hy, (o) Har (o) Sy ({w; }) (2.7.9)
i=1

The right hand side of (2.7.9) is the sum of k dyads, so that the rank of
R, (0) is at most k < 2n, contradicting the PE of w.
(b) implies (a)
We also prove this by contradiction. If w is not PE, there exists ¢ € R*"
such that
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c¢"R,(0)c = 0 (2.7.10)
Using (2.7.8), we see that (2.7.10) implies that
[IA, (o)e|2S, (dw) = 0 (2.7.11)
Since S, (dw) is a continuous, positive measure, we may conclude that
I?,f,(jw)c =0 for all w e support S, (dw) (2.7.12)
Since the support of S, (dw) has at least 27 points, say w;, . .., wy,, we
have that
HI, (jwj)e = 0 i=1,...,2n (2.7.13)

contradicting the hypothesis of linear independence of flw,( Jw;) for
i=1,...,2n. 0O

We saw that sufficient richness of order 2» in the reference input
translates to w PE, provided that the I?w,( Jw;) are independent for every
set of 2n w;’s. It remains to be verified that this property holds for the
H,,(s) given in (2.7.1).

Theorem 2.7.3 Exponential Parameter Convergence and Sufficient Rich-
ness

Consider the identification problem of Section 2.1, with assumptions

(Al) and (A2) and P stable, the identifier structure of Section 2.2 and
the gradient algorithms (2.4.1) or (2.4.2), or the normalized LS algorithm
with covariance resetting (2.4.6)-(2.4.7).

If r is stationary and sufficiently rich of order 2n
Then  the identifier parameter § converges to the nominal parameter
6* exponentially fast.

Proof of Theorem 2.7.3

Using theorems 2.5.3 and 2.7.2, we are left to show that, for every w,, . .
., wy, € IR, the vectors I;’W,(jw,-) (with I:Iw, defined in (2.7.1)) are
linearly independent in C 2",

We show the result by contradiction. Assume that there existed w,
., wy, such that

HI (jw)e = 0 (2.7.14)

B

for some ce €2 and for all i =1, ..., 2n. Using the fact that
(A, b)) are in controllable canonical form and that P(s) = kpiip(s)/dy(s),
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(2.7.14) becomes

. . oNn- Ay (jo;)
1,]‘-01..--,(_10)1) : ’kpAp—.—‘—:
dp(]“)i)
Gyl 2291k M c =0 (2715
dy(Jjwi) dp(jw;)
fori =1,..., 2n, that is
[dy(s), sdp(s), ..., s"'dy(s), ky Ayls),
kysiy(s), ..., s" VkyA,s)]c = 0 (2.7.16)
for s = jw;, . .., jwy, Equation (2.7.16) may be written more com-
pactly as
eW(s)dy(s) + EPs)k, Aip(s) = 0 (2.7.17)
fors = jw, ..., jwy,, where
W(s) = ci+eas+ st
and
EO(S) = Cpot + CusaS + - + sl (2.7.18)

The polynomial on the left-hand side of (2.7.17) is of degree at
most 2n ~ 1. Since it vanishes at 2n points, it must be identically zero.
Consequently, we have

koflp(s) - &) for all s (2.7.19)

dy(s) é9(s)
By assumption, cip(s) is of degree n and 7,(s), c?,,(s) are coprime. There-
fore, (2.7.19) cannot be satisfied since the degree of ¢¥ is at most n - 1.
This establishes the contradiction. O

Comments
It would appear that the developments of this section would enable us to
give an explicit expression for the rate of exponential convergence; it is
in fact possible to carry out this program rigorously when the rate of
adaptation is slow (see Chapter 4 for a further and more detailed
description of this point).

If w is not PE, then the parameter error need not converge to zero.
In this case, S, is concentrated on k < 2n frequencies w;, . . ., wy.
Intuition suggests that although 6 need not converge to 6°, it should
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converge to the set of s for which the identifier transfer function

matches the plant transfer function at the frequencies s = jw;, ..., jw.
This is indeed the case.

2.7.2 Partial Parameter Convergence

We now consider the case when the spectrum S, (dw) is concentrated on
k < 2n points. Before stating the theorem, let us discuss the idea infor-
mally. From the structure of the identifier, we see that the plant output
is given by

¥y = 6 H,,(r) (2.7.20)
and the identifier output by
yi = 67(t)H,, () (2.7.21)
Consequently, if the identifier output matches the plant output at
$ = jwy, ..., jwg, the asymptotic value of § must satisfy
(A& ] [ A& ]
er(.](’-’l)T er(]“’l)r
6 = . 6 (2.7.22)
ﬁwr(jwk)TJ I‘}wr(jwk)TJ

Let us then call O, the set of 6’s, which satisfy (2.7.22). Clearly, 6* ¢ 0
and

(}}wr(jwl)r.

® = 6"+ null space . (2.7.23)

er(jwk)T
The k& row vectors f}'w,( Jw;)T are linearly independent. Consequently, 6
has dimension 2n - k.

In terms of the parameter error vector ¢ = 6~06", © has the simple
description

fe® <= R,(0)¢ = 0 (2.7.24)

We leave the verification of this fact to the reader, recalling that
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k
Ry (0) = 2 Hyr(wi) Hyr (o) Sy ({w;}) (2.7.25)

i=1

Proceeding more rigorously, we have the following theorem.

Theorem 2.7.4 Partial Convergence Theorem
Consider the identification problem of Section 2.1, with assumptions
(A1)-(A2) and P stable, the identifier structure of Section 2.2 and the

gradient algorithms (2.4.1) or (2.4.2), or the normalized LS algorithm
with covariance resetting (2.4.6)-(2.4.7).

If r is stationary
Then lim R,(0)¢(t) =0
{ - QO

Proof of Theorem 2.7.4
The proof relies on the fact, proved in theorem 2.4.5, that the output
error ¢, = ¢’ w—> 0 as t - oo, and so does the derivative of the
parameter error ¢. Since ¢ and w are bounded, let k be such that
| o), |w()| <k,forallt 2 0.

We will show that, for all ¢ > 0, there exists ¢; = 0 such that, for all
t =1y, $7(t)R,(0)¢(t) < e. This means that ¢7(z) R, (0) ¢(¢) converges
to zero as ¢t — oo and since R, (0) is symmetric positive definite, it also
implies that | R, (0) ¢(¢)| tends to zero as t — oo.

Since w has an autocovariance, for T large enough

to+ T
1 T €
R, (0) - — { wwln)dr | < = (2.7.26)
for all ¢y = 0 and therefore
o+ T
|60)" Ry @0() - 6T [ woweY dro0) | s £ @127
fo

From the fact that ¢ — 0 as ¢ — oo (cf. theorem 2.4.5) and
#Tw — 0 as t — oo, we find that there exists t; such that, forall 1 = ¢,

[T Owo)] < 5 (2.7.28)

and
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(1) < —= 2.7.29
1601 < 57 (2.7.29)

From (2.7.29), we have that | ¢(r) - ¢(¢t)| < e(r—1)/6k3T for all
121t 2 t;. Together with the boundedness of ¢ and w, this implies that,
fort > ¢,

t+T t+T
|6 | 5 [ weorwTerdr| 60 - 5 [ 7w wT o)) e

t+T

- ILT [ wT@) (@) - ¢(r) wT(r) (9(2) + ¢l ) dr
t

< £ 2.7.30
3 ( )

Using (2.7.28), we have that, for ¢ > ¢,

t+T

|iTj T ()wE)wT (r)¢(r)dr | < —g- (2.7.31)
t
Now, combining (2.7.27), (2.7.30) and (2.7.31), we have that, for ¢t = ¢,
dT ()R, (0)p (1) < ¢ (2.7.32)

which completes the proof of the theorem., O

Comments

The proof relies on the fact that for both the identification schemes dis-
cussed the parameter error eventually becomes orthogonal to the regressor
w, and the updating slows down. These are very common properties of
identification schemes.

While the 2n -k dimensional set © to which 6(t) converges
depends only on the frequencies w;, . . ., w; and not on the average
powers S,({w;}), ..., S;({wr}) contained in the reference signal at
those frequencies, the rate of convergence of 6 to © depends on both,

As opposed to the proof of theorem 2.7.3, the proof of theorem
2.7.4 does not rely on theorem 2.5.3 relating PE and exponential conver-
gence. If w is PE and R, (0) >0, the proof of theorem 2.7.4 is an alter-
nate proof of the parameter convergence results of Section 2.5, with the
additional assumption of stationarity of the reference input r(z).
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2.8 CONCLUSIONS

In this chapter, we derived a simple identification scheme for SISO LTI
plants. The scheme involved a generic linear error equation, relating the
identifier error, the regressor and the parameter error. Several gradient
and least-squares algorithms were reviewed and common properties were
established, that are valid under general conditions. It was shown that
for any of these algorithms and provided that the regressor was a
bounded function of time, the identifier error converged to zero as ¢
approached infinity. The parameter error was also guaranteed to remain
bounded. When the regressor was not bounded, but satisfied a regularity
condition, then it was shown that a normalized error still converged to
Zero.

The exponential convergence of the parameter error to its nominal
value followed from a persistency of excitation condition on the regres-
sor. Guaranteed rates of exponential convergence were also obtained
and showed the influence of various design parameters. In particular,
the reference input was found to be a dominant factor influencing the
parameter convergence.

The stability and convergence properties were further extended to
strictly positive real error equations. Although more complex to analyze,
the SPR error equation was found to have similar stability and conver-
gence properties. In particular, PE appeared as a fundamental condition
to guarantee exponential parameter convergence.

Finally, the PE conditions were transformed into conditions on the
input. We assumed stationarity of the input, so that a frequency-domain
analysis could be carried out. It was shown that parameter convergence
was guaranteed, if the input contained the same number of spectral com-
ponents as there were unknown parameters. If the input was a sum of
sinusoids, for example, their number should be greater than or equal to
the order of the plant.

CHAPTER 3
ADAPTIVE CONTROL

3.0 INTRODUCTION

In this chapter, we derive and analyze algorithms for adaptive control.
Our attention is focused on model reference adaptive control. Then, the
objective is to design an adaptive controller such that the behavior of
the controlled plant remains close to the behavior of a desirable model,
despite uncertainties or variations in the plant parameters. More for-
mally, a reference model M is given, with input r(z) and output y,(?).
The unknown plant P has input u(¢) and output y,(¢). The control
objective is to design u(¢) such that y,(t) asymptotically tracks ym(t),
with all generated signals remaining bounded.

We will consider linear time invariant systems of arbitrary order,
and establish the stability and convergence properties of the adaptive
algorithms. In this section however, we start with an informal discus-
sion for a first order system with two unknown parameters. This will
allow us to introduce the algorithms and the stability results in a simpler
context.

Consider a first order single-input single-output (SISO) linear time
invariant (LTI) plant with transfer function

P

= (3.0.1)
s+ a,

3

where k, and a, are unknown. The reference model is a stable SISO
LTI system of identical order
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