
Model Theory, Algebra, and Geometry
MSRI Publications
Volume 39, 2000

Subanalytic Geometry

EDWARD BIERSTONE AND PIERRE D. MILMAN

Abstract. Lou van den Dries has suggested that the o-minimal structure
of the classes of semialgebraic or subanalytic sets makes precise Grothen-
dieck’s idea of a “tame topology” based on stratification. These notes
present another viewpoint (with intriguing possible relationships): we de-
scribe a range of classes of spaces between semialgebraic and subanalytic,
that do not necessarily fit into the o-minimal framework, but that are
“tame” from algebraic or analytic perspectives.

1. Introduction

Semialgebraic and subanalytic sets capture ideas in several areas: In model
theory, they express properties of quantifier elimination. In geometry and anal-
ysis, they provide a language for questions about the local behaviour of alge-
braic and analytic mappings. Lou van den Dries has suggested that the o-
minimal structure of the classes of semialgebraic or subanalytic sets makes pre-
cise Grothendieck’s vision of a “tame topology”. (In his provocative Esquisse
d’un programme, Grothendieck [1984] proposes an axiomatic development of a
topology based on ideas of stratification in order to study, for example, singu-
larities that arise in compactifications of moduli spaces.) These notes present
another point of view (with intriguing possible relationships): we will describe a
range of geometric classes of spaces between semialgebraic and subanalytic, that
do not necessarily fit into the o-minimal framework, but that are “tame” from
algebraic or analytic perspectives. The questions we discuss are in directions
pioneered by Whitney, Thom,  Lojasiewicz, Gabrielov and Hironaka. (We will
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not try to give a general survey of recent results in the area of semialgebraic and
subanalytic sets.)

Semialgebraic and semianalytic sets. A semialgebraic subset of Rn is a
subset of the form

X =
p⋃
i=1

q⋂
j=1

Xij , (1.1)

where each Xij is of the form {fij(x) = 0} or {fij(x) > 0}, with fij(x) =
fij(x1, . . . , xn) a polynomial. For example, Figure 1 shows an algebraic subset
X of R3 defined by the equation z2−xy2 = 0 (“Whitney’s umbrella”). Figure 1
illustrates a stratification of X. A stratification means a finite (or locally finite)
partition into connected smooth manifolds (strata) within the class (here, semi-
algebraic), such that the frontier of each stratum is a union of strata of lower
dimension.

Figure 1. Stratification of Whitney’s umbrella z2 − xy2 = 0.

According to the Tarski–Seidenberg theorem, the image of a semialgebraic
subset X of Rm+n by a projection Rm+n → R

n is semialgebraic. (For the basic
properties of semialgebraic or subanalytic sets, see [Bierstone and Milman 1988],
for example.) The Tarski–Seidenberg theorem is an assertion about elimination
of quantifiers; it says that any formula obtained using a finite number of “and”,
“or”, negations, existential and universal quantifiers, from formulas of the form
f(x) = 0 or f(x) > 0, where f(x) = f(x1, . . . , xn) is a polynomial, describes the
same set as a formula without quantifiers.

A semianalytic subset of Rn is a subset that is defined locally (i.e., in some
neighbourhood of any point of Rn) by an expression of the form (1.1), but where
the functions fij are real-analytic. A projection of even a compact semianalytic
set need not be semianalytic. (See Example 2.3 below.)

Subanalytic sets. A subset X of Rn is subanalytic if, locally, X is a pro-
jection of a relatively compact semianalytic set. The class of semianalytic sets
was enlarged to include projections in this way by  Lojasiewicz [1964], although
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the term “subanalytic” is due to Hironaka [1973]. Gabrielov’s theorem of the
complement asserts that the complement of any subanalytic set is subanalytic
[Gabrielov 1968]. This is also an assertion about “quantifier simplification”:
The complement of a subanalytic set is defined locally by a formula involving
real-analytic equations and inequalities, with existential and universal quanti-
fiers; Gabrielov’s theorem says that the complement can be defined locally by an
existential formula.

The uniformization theorem. A closed subanalytic subset X of Rn is lo-
cally a projection of a compact semianalytic set. In fact, closed subanalytic
sets are precisely the images of proper real-analytic mappings (from manifolds),
according to the following uniformization theorem:

Theorem 1.2. Let X be a closed subanalytic subset of Rn. Then X is the
image of a proper real-analytic mapping ϕ: M → R

n, where M is a real-analytic
manifold of the same dimension as X.

The uniformization theorem is a consequence of resolution of singularities [Hi-
ronaka 1964; 1974; Bierstone and Milman 1997]; but see [Bierstone and Milman
1988, Sections 4 and 5] for a short elementary proof. From the point of view of
the uniformization theorem, subanalytic sets can be viewed as real analogues of
complex-analytic sets, or analytic analogues of semialgebraic sets. (See the table
Images of proper mappings on the next page.) These classes share many proper-
ties of a “tame topology”. For example, any set in the class (locally) has finitely
many connected components, each in the class; the components, boundary and
interior of a set in the class are in the class; a set in the class can be stratified
or even triangulated by subsets in the class.

But there are crucial distinctions between the behaviour of semialgebraic and
general subanalytic sets. An important example that we will not deal with
explicitly is their behaviour at infinity: A semialgebraic subset of Rn remains
semialgebraic at infinity (i.e., when Rn is compactified to real projective space
P
n(R)). This is false for subanalytic sets, in general. An understanding of the

behaviour at infinity of certain important classes of subanalytic sets (as in [Wilkie
1996]) represents the most striking success of the model-theoretic point of view
in subanalytic geometry.

Grothendieck, in Esquisse d’un programme, suggests that “tame” should re-
flect not only conditions on strata, but also the way that the strata fit together.
(For example, semialgebraic and subanalytic sets admit stratifications that are
Lipschitz locally trivial [Mostowski 1985; Parusiński 1994]). The way that strata
are attached to each other is closely related to the way that the local behaviour
of X varies along a given stratum S, or as we approach S \ S. Grothendieck
envisaged a hierarchy of tame geometric categories from semialgebraic to suban-
alytic.



154 EDWARD BIERSTONE AND PIERRE D. MILMAN

Section 2 below includes a sequence of examples illustrating differences in
the local behaviour of semialgebraic and general subanalytic sets. The results
described in the following sections are directed towards understanding these
phenomena; Theorems 3.1 and 4.4 characterize certain subclasses of subanalytic
sets that are tame from algebraic or or analytic perspectives, although they do
not necessarily fit into an o-minimal framework. The uniformization theorem
provides the point of view toward subanalytic geometry that is taken here: On
the one hand, subanalytic sets provide a natural language for questions about
the local behaviour of analytic mappings, and, on the other, local invariants of
analytic mappings can be used to characterize a hierarchy of “tame” classes of
sets (Nash-subanalytic, semicoherent, . . . ) intermediate between semialgebraic
and subanalytic.

The phenomena studied in these notes concern not peculiarities of the re-
als, but rather the local behaviour of analytic mappings whether real or com-
plex. Although it is true, for example, that the image of an arbitrary complex-
analytic mapping is a closed analytic set (by the theorem of Remmert [1957]),
a complex-analytic set X can be realized, more precisely, as the image of a
proper complex-analytic mapping ϕ that is relatively algebraic over any suffi-
ciently small open subset V of the target; this means there is a closed embedding
ι : ϕ−1(V ) → V × Pk(C) commuting with the projections to V , whose image
is defined by homogeneous polynomial equations (in terms of the homogeneous
coordinates of Pk(C)) with coefficients analytic functions on V (by resolution of
singularities [Hironaka 1964; 1974; Bierstone and Milman 1997]). The image of a
proper real-analytic mapping satisfying the analogous condition is semianalytic,
by  Lojasiewicz’s generalization of the Tarski–Seidenberg theorem [ Lojasiewicz
1964; Bierstone and Milman 1988, Theorem 2.2]. Subanalytic sets, on the other
hand, provide a natural setting for questions about the local behaviour of ana-
lytic mappings in general.

Images of proper mappings.

Algebraic Relatively Analyticalgebraic

closed closed
C algebraic analytic −→

sets sets

closed closed closed
R semialgebraic semianalytic subanalytic

sets sets sets

(In the real case, “proper” imposes no restriction on local behaviour.)
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Uniformization and rectilinearization. The uniformization theorem above
is closely related to the following rectilinearization theorem for subanalytic func-
tions. Let N denote a real-analytic manifold; e.g., Rn. (A function f : X → R,
where X ⊂ N , is called subanalytic if the graph of f is subanalytic as a subset
of N × R.)

Theorem 1.3 [Bierstone and Milman 1988, § 5]. Let f : N → R be a continuous
subanalytic function. Then there is a proper analytic surjection ϕ: M → N ,
where dimM = dimN , such that f ◦ ϕ is analytic and locally has only normal
crossings.

The latter condition means that each point of M admits a neighbourhood with
a coordinate system x = (x1, . . . , xn) in which f(ϕ(x)) = xα1

1 · · ·xαnn u(x) and
u(x) does not vanish.

It may be interesting to ask whether the uniformization and rectilinearization
properties of semialgebraic or subanalytic sets have reasonable analogues for a
given o-minimal structure (or geometric category in the sense of [van den Dries
and Miller 1996]). This is true, for example, for restricted subpfaffian sets (pro-
jections of relatively compact semianalytic sets that are defined using Pfaffian
functions in the sense of [Khovanskĭı 1991]). The point is that [Bierstone and
Milman 1988, § 4], on “transforming an analytic function to normal crossings
by blowings-up”, preserves subalgebras of analytic functions that are closed un-
der composition by polynomial mappings, differentiation and division (when the
quotient is analytic).

2. Examples

In this section, we describe a range of phenomena that distinguish between
the behaviour or algebraic and general analytic mappings. Given a subset X of
R
n (or Cn), let Aa(X) denote the ideal of germs of analytic functions at a that

vanish on X.

Coherence. Every complex-analytic set is coherent (according to the theory of
Oka and Cartan). This means that, ifX is a closed complex-analytic subset of Cn

and a ∈ X, then Aa(X) generates Ab(X), for all b ∈ X in some neighbourhood
of a. (See, for example, [ Lojasiewicz 1991, §VI.1].)

Real-algebraic sets already need not be coherent [Whitney 1965]; for example,
Whitney’s umbrella (Figure 1) is not coherent at the origin. Here are two more
examples:

Example 2.1 [Hironaka 1974]. Let X be the closed algebraic subset of R3

defined by z3 − x2y3 = 0 (Figure 2).
In this example, A0(X) = (z3 − x2y3), the ideal of germs of real-analytic

functions at 0 generated by z3 − x2y3, but, at a nonzero point b of the x-axis,
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z

y

x

Figure 2. z3 − x2y3 = 0.

z3 − x2y3 factors non-trivially,

z3 − x2y3 = (z − x2/3y)(z2 + x2/3yz + x4/3y2),

and Ab(X) = (z − x2/3y). The analytic function t = z − x2/3y defined for
x 6= 0, is called a Nash function: t satisfies a nontrivial polynomial equation
P (x, y, z, t) = 0. (We can take P = (t− z)3 + x2y3.)

Example 2.2 [Bierstone and Milman 1988]. Let X be the real-algebraic subset
z3 − x2yz − x4 = 0 of R3 (Figure 3).

The singularities of X form a half-line {x = z = 0, y ≥ 0}. In particular,
z3 − x2yz − x4 does not generate Ab(X), b ∈ {x = z = 0, y < 0}, so that X is
not coherent. In fact, over {(x, y) : y < 0}, z3 − x2yz − x4 = 0 can be solved
uniquely as z = g(x, y), where g is analytic. This can be seen by transforming
the given equation by the quadratic mapping

σ : x = u, y = v, z = uw.

(σ is the blowing-up of R3 with centre {x = z = 0} (restricted to a local coor-
dinate chart)). Then σ−1(X) is given by u3(w3 − vw − u) = 0; i.e., σ−1(X) =
E′ ∪X ′, where E′ is the coordinate plane {u = 0} and X ′ is the smooth hyper-
surface {u = w3 − vw}, which is transverse to E′ when v < 0.

Local dimensions of a subanalytic set. At each point of a subanalytic set,
we can consider its local topological dimension, as well as the dimensions of
its local analytic and formal closures (in a sense we will make precise below).
These three local dimensions coincide for analytic or semianalytic sets, but they
may all be distinct for subanalytic sets in general [Gabrielov 1971]. Gabrielov’s
construction (Example 2.5) is based on the following classical example of Osgood
(1920’s).
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Figure 3. Blowing-up of X = {z3 − x2yz − x4 = 0}.

Example 2.3. Let ϕ denote the analytic mapping

ϕ(x1, x2) = (x1, x1x2, x1x2e
x2).

Then there are no (nonzero) formal relations (among the components of ϕ) at
the origin (x1, x2) = (0, 0); i.e., if G(y1, y2, y3) is a nonzero formal power series
and G(x1, x1x2, x1x2e

x2) = 0, then G = 0. Indeed, writing G =
∑∞
j=0Gj ,

where Gj(y1, y2, y3) denotes the homogeneous part of G of order k, we have

0 = G(x1, x1x2, x1x2e
x2) =

∞∑
j=0

xj1Gj(1, x2, x2e
x2),

so that all Gj(1, x2, x2e
x2) = 0, and therefore all polynomials Gj are zero be-

cause ex2 is transcendental.

Relations. If y = ϕ(x), where x = (x1, . . . , xm) and y = (y1, . . . , yn), is a
mapping (in some given class), we let ϕ∗ denoted the homomorphism of rings of
functions given by composition with ϕ; i.e., ϕ∗ : g(y) 7→ (g ◦ ϕ)(x). Then

Kerϕ∗ = {g(y1, . . . , yn) : g
(
ϕ1(x), . . . , ϕn(x)

)
= 0}

is, by definition, the ideal of relations among the components ϕ1, . . . , ϕn of ϕ.
Let K = R or C. Let U be an open subset of Km and let a ∈ U . We write

K{x− a} = K{x1 − a1, . . . , xm − am} or K[[x− a]] = K[[x1 − a1, . . . , xm − am]]
for the rings of convergent or formal power series (respectively) centred at a.
The ring K{x− a} can be identified with the local ring Oa of germs of analytic
functions at a, and K[[x− a]] with the completion Ôa of Oa. (These notions and
remarks make sense, more generally, using local coordinates on an m-dimensional
K-analytic manifold U .) We will write ma or m̂a for the maximal ideal of Oa or
Ôa (respectively). Suppose that ϕ is an analytic mapping ϕ : U → K

n, and let
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b = ϕ(a). Then ϕ induces ring homomorphisms

ϕ∗a : Ob → Oa,

ϕ̂∗a : Ôb → Ôa;

ϕ∗a or ϕ̂∗a corresponds to composition of convergent or formal power series centred
at b (respectively) with the Taylor expansion ϕ̂a of ϕ at a. Kerϕ∗a or Ker ϕ̂∗a
is the ideal of convergent or formal relations (respectively) among the Taylor
expansions ϕ̂1,a, . . . , ϕ̂n,a of the components of ϕ.

If X is an analytic subset of Kn and b ∈ X, then

dimbX = dim
Ob

Ab(X)
,

where dimbX denotes the geometric dimension of X at a, and dim Ob/Ab(X)
denotes the Krull dimension of the local ring Ob/Ab(X); i.e., the length of a
longest chain of prime ideals in this ring. (See [ Lojasiewicz 1991, § IV.4.3].) Let
ϕ be an analytic mapping and b = ϕ(a), as above. Then there is a smallest
(germ of an) analytic set Yb at b, such that Yb contains ϕ(V ), for a sufficiently
small neighbourhood V of a. Clearly,

Ab(Yb) = Kerϕ∗a.

Ranks of Gabrielov. Gabrielov introduced the following three ranks associated
to an analytic mapping ϕ at a point a of its source:

ra(ϕ) := generic rank of ϕ at a,

rF
a (ϕ) := dim

K[[y − ϕ(a)]]
Ker ϕ̂∗a

,

rA
a (ϕ) := dim

K{y − ϕ(a)}
Kerϕ∗a

.

(The “generic rank” of ϕ at a is the largest rank of the tangent mapping of ϕ in
a small neighbourhood of a.) It is not difficult to see that

ra(ϕ) ≤ rF
a (ϕ) ≤ rA

a (ϕ).

(We have rF
a (ϕ) ≤ rA

a (ϕ) because Kerϕ∗a ⊂ Ker ϕ̂∗a. On the other hand, rx(ϕ) is
constant in a neighbourhood of a, and at a point x where rx(ϕ) equals the rank of
the tangent mapping of ϕ, all three ranks of Gabrielov coincide (by the implicit
function theorem) and rF

x (ϕ) ≤ rF
a (ϕ) (for example, by [Bierstone and Milman

1987a, Prop. 8.3.7]). Therefore, ra(ϕ) ≤ rF
a (ϕ). See also [Milman 1978].)

In the 1960’s, Artin and Grothendieck asked: Is Ker ϕ̂∗a generated by Kerϕ∗a ?
In other words, is rF

a (ϕ) = rA
a (ϕ)? Gabrielov [1971] showed that the answer is

“no”. (See Example 2.5 below.) Of course, if ϕ is a proper complex-analytic
mapping, then all three ranks above coincide, by Remmert’s proper mapping
theorem [Remmert 1957].
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Definition 2.4. We say that ϕ is regular at a if ra(ϕ) = rA
a (ϕ). We say that

ϕ is regular if it is regular at every point of the source.

Local dimensions. The ranks of Gabrielov have counterparts for a subanalytic
set. LetX denote a closed subanalytic subset of Rn. If b ∈ X, then, by definition,
Ab(X) = Ab(Yb), where Yb is the smallest germ of an analytic set at b containing
the germ of X. Suppose that ϕ : M → R

n is a proper real-analytic mapping
from a manifold M , such that ϕ(M) = X. Clearly,

Ab(X) =
⋂

a∈ϕ−1(b)

Kerϕ∗a.

This suggests that we define the formal local ideal Fb(X) of X at b as

Fb(X) =
⋂

a∈ϕ−1(b)

Ker ϕ̂∗a.

(The preceding intersections are finite: Kerϕ∗a and Ker ϕ̂∗a are constant on con-
nected components of the fibre ϕ−1(b) [Bierstone and Milman 1998, Lemma
5.1].) The ideal Fb(X) does not depend on the mapping ϕ: There are equivalent
ways to define it using X alone [Bierstone and Milman 1998, Lemma 6.1]; for
example, Fb(X) = {G ∈ Ôb : (G ◦ γ)(t) ≡ 0 for every real-analytic arc γ(t) in X

such that γ(0) = b}.
We define

db(X) := dimbX,

dA
b (X) := dimYb = dim

Ob

Ab(X)
,

dF
b (X) := dim

Ôb

Fb(X)
.

Then

db(X) ≤ dF
b (X) ≤ dA

b (X),

by the corresponding inequalities among the ranks of Gabrielov. If X is semiana-
lytic, then Fb(X) is generated by Ab(X), and all three local dimensions coincide
[ Lojasiewicz 1964; Bierstone and Milman 1988, Theorem 2.13].

Example 2.5 [Gabrielov 1971]. Let ϕ(x) =
(
ϕ1(x), ϕ2(x), ϕ3(x)

)
denote Os-

good’s mapping (Example 2.3). Then there is a divergent power series G(y) =
G(y1, y2, y3) such that ϕ4(x) := G

(
ϕ(x)

)
converges: Write

ϕ3(x) = x1x2 + x1x
2
2 +

x1x
3
2

2!
+ · · · .
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We construct a sequence of polynomials gk(y), for k = 1, 2, . . ., to kill terms of
higher and higher order in the expansion of ϕ3(x):

g1(y) := y3 − y2,

g2(y) := 2
(
y1(y3 − y2)− y2

2

)
,

...

gk(y) := k
(
y1gk−1(y)− yk2

)
,

g1 ◦ ϕ = x1x
2
2 + · · · ,

g2 ◦ ϕ = x2
1x

3
2 + · · · ,

...

gk ◦ ϕ = xk1x
k+1
2 + · · · .

Note that the maximum absolute value of a coefficient of gk(y) is k!, while
the maximum absolute value of a coefficient in the power series expansion of
gk
(
ϕ(x)

)
is 1. It follows that the power series G(y) :=

∑∞
k=1 gk(y) diverges,

while ϕ4(x) := G
(
ϕ(x)

)
converges.

Set ψ(x) :=
(
ϕ1(x), ϕ2(x), ϕ3(x), ϕ4(x)

)
. It is not difficult to see that

r0(ψ) = 2, rF
0 (ψ) = 3, rA

0 (ψ) = 4.

The images of proper real-analytic mappings that are regular form an impor-
tant subclass of closed subanalytic sets, called Nash-subanalytic. Regular map-
pings (and therefore Nash-subanalytic sets) are characterized by a theorem of
Gabrielov described in Section 3 below. Although none of Examples 2.1, 2.2,
2.3 or 2.5 above is coherent, it is clear that each satisfies a stratified version of
the property of coherence, in some reasonable sense. (For example, the images
of Osgood’s and Gabrielov’s mappings — Examples 2.3 and 2.5 — are coherent
outside the origin.) We will describe a larger class of “semicoherent” subanalytic
sets that captures such an idea. In Section 4, we will see that semicoherent sets
are “tame” from an analytic viewpoint.

Images of proper mappings.

Algebraic Relatively Regularalgebraic

closed closed
C algebraic analytic −→ −→

sets sets

closed closed closed Nash- semicoherent
R semialgebraic semianalytic subanalytic setssets sets sets

Semicoherence. We will say that a subanalytic set X is semicoherent if it has
a stratification such that the formal local ideals Fb(X) of X are generated over
each stratum by finitely many subanalytically parametrized formal power series.
More precisely:
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Definition 2.6. Let X ⊃ Z denote closed subanalytic subsets of Rn. We
say that X is (formally) semicoherent rel Z (relative to Z) if X has a (locally
finite) subanalytic stratification X =

⋃
Xi such that Z is a union of strata and

X satisfies the following formal semicoherence property along every stratum Xi

outside Z: For every point of Xi, there is a neighbourhood V and there are
finitely many formal power series

fij( · , Y ) =
∑
α∈Nn

fij,α( · )Y α1
1 · · ·Y αnn

whose coefficients fij,α are analytic functions on Xi∩V that are subanalytic (i.e.,
their graphs are subanalytic as subsets of V ×R), such that, for all b ∈ Xi ∩ V ,
Fb(X) is generated by the elements

∑
α fij,α(b)(y − b)α ∈ R[[y − b]]. ((y − b)α

means (y1 − b1)α1 · · · (yn − bn)αn , where α = (α1, . . . , αn).)

Subanalyticity of the coefficients, fij,α is a natural restriction on their growth
at the boundary of a stratum (as expressed by a  Lojasiewicz inequality ; com-
pare [ Lojasiewicz 1964; Bierstone and Milman 1988, § 6]). We can formulate an
(analytic) semicoherence condition analogous to that above by using the ideals
Ab(X) in place of Fb(X), but the formal condition seems to be the more useful
(as in Theorem 4.4 below). The formal and analytic semicoherence conditions
are equivalent if each Fb(X) is generated by Ab(X) (as in the case of real-
or complex-analytic sets). Semicoherence of semi-algebraic sets was proved by
Tougeron and Merrien [Merrien 1980], and of Nash-subanalytic sets by Bierstone
and Milman [1987a; 1987b]; in these cases, each Fb(X) is generated by Ab(X).

Paw lucki has proved that, if Z denotes the set of non-Nash points of X (i.e.,
the points that do not admit Nash-subanalytic neighbourhoods in X), then Z

is subanalytic [1990] and X is semicoherent rel Z [1992]. Paw lucki’s theorem
implies the analogous statement for the non-semianalytic points of X.

Question. Paw lucki’s result suggests the following general question about
o-minimal structures on R (probably easier than Paw lucki’s theorem; Nash-
subanalytic sets do not correspond to an o-minimal structure): Let S1 ⊂ S2 be
o-minimal structures on R. If X is S2-definable and Y ⊂ X denotes the points
of X that do not admit S1-definable neighbourhoods, then is Y S2-definable?
(Piȩkosz [1998] gives a result in this direction.)

In 1986, Hironaka announced that every subanalytic set X is both F- and A-
semicoherent (and, as a consequence, that X admits a subanalytic stratification
with the local dimensions dF

b (X) and dA
b (X) constant on every stratum) [Hiron-

aka 1986]. But Paw lucki has given a counterexample!

Example 2.7 [Paw lucki 1989]. Let {an} be any sequence of points in an open
interval I = (−δ, δ) of R (where δ > 0). Paw lucki constructs an analytic mapping
ϕ: I3 → R

5 of the form

ϕ(u,w, t) =
(
u, t, tw, tΦ(u,w), tΨ(u,w, t)

)
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such that, in I = I × {0} × {0}, ϕ admits no nonzero formal relation (i.e.,
Ker ϕ̂∗a = 0) precisely at the points a of {an}, but ϕ has a nonzero convergent
relation (i.e., Kerϕ∗a 6= 0) throughout any open interval in I \ {an}.

Paw lucki’s idea is based on Gabrielov’s example 2.5. Take δ = 1
2 . We can

define

Φ(u,w) :=
∞∑
n=1

(
(u− a1) · · · (u− an)

)r(n)
wn,

where {r(n)} is an increasing sequence of positive integers with lim sup r(n)/n =
∞. Write pn(u) :=

(
(u− a1) · · · (u− an)

)r(n). We define a sequence of rational
functions fn(u, t, x, y) by

f1(u, t, x, y) :=
y

p1(u)

and, for n > 1,

fn(u, t, x, y) :=
pn−1(u)
pn(u)

t
(
fn−1(u, t, x, y)− xn−1

)
=
tn−1y

pn(u)
− 1
pn(u)

n−1∑
k=1

pk(u)tn−kxk.

Then each

fn
(
u, t, tw, tΦ(u,w)

)
= tn

∞∑
k=n

pk(u)
pn(u)

wk,

and we can set

tΨ(u,w, t) :=
∞∑
n=1

fn
(
u, t, tw, tΦ(u,w)

)
.

(See [Paw lucki 1989] for details.)
Paw lucki’s construction provides examples of a variety of interesting phenom-

ena, depending on the choice of the sequence {an}; for instance:

(1) If limn→∞ an = 0 but an 6= 0 for all n, then there is no (nonzero) relation
at each an, a divergent relation (but no convergent relation) at 0, and a con-
vergent relation at any other point of I. Suppose that X = ϕ(K), where K is
a compact subanalytic neighbourhood of 0 in I3. Clearly, X is neither F- nor
A-semicoherent.

(2) If {an} is dense in I, then there is no convergent relation at any point
of I, but there is a formal relation at every point of I \ {an}. Therefore, A-
semicoherent ; F-semicoherent.

We believe it is not known whether F-semicoherent ⇒ A-semicoherent.

(3) If the accumulation points of {an} themselves form a convergent sequence
{ck}, then X = ϕ(K) is not semicoherent precisely at the points ϕ(ck) and
ϕ(lim ck) (i.e., these points do not admit semicoherent neighbourhoods in X).
In other words, the points at which X is not semicoherent do not necessarily
form a subanalytic subset!
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The phenomena above show that subanalytic sets in general can be wild indeed.
The class of semicoherent sets, on the other hand, can be characterized by several
(remarkably equivalent) “tameness” properties (to be described in Section 4).
For example, let X be a closed subanalytic subset of Rn, and let Ck(X) denote
the ring of restrictions to X of Ck (i.e., k times continuously differentiable)
functions on Rn, where k ∈ N ∪ {∞}. Then X is (F-) semicoherent if and
only if C∞(X) is the intersection

⋂
k∈N Ck(X) of all finite differentiability classes

[Bierstone and Milman 1998; Bierstone et al. 1996]).

Question. Are restricted subpfaffian sets semicoherent? (A closed restricted
subpfaffian set is a proper projection of a semianalytic set that is defined using
Pfaffian functions in the sense of Khovanskii [1991]; compare [Wilkie 1996].)

3. Gabrielov’s Theorem

Theorem 3.1. Let y = ϕ(x), where x = (x1, . . . , xm) and y = (y1, . . . , yn),
denote a real-analytic (or complex-analytic) mapping defined in a neighbourhood
of a point a. Set b = ϕ(a). Then the following conditions are equivalent :

(1) ra(ϕ) = rF
a (ϕ); i .e., there are “sufficiently many” formal relations.

(2) ra(ϕ) = rF
a (ϕ) = rA

a (ϕ); i .e., ϕ is regular at a.

(3) Composite function property :

Oa ∩ ϕ̂∗a(Ôb) = ϕ∗a(Ob).

(4) Linear equivalence of topologies. Let R := Ôb/Ker ϕ̂∗a and R′ := Ôa, so there
is a natural inclusion of local rings R ↪→ R′. Let m and m′ denote the maximal
ideals of R and R′, respectively . Then there exist α, β ∈ N such that , for all k,

(m′)αk+β ∩ R ⊂ mk.

The composite function property (3) concerns the solution of an equation f(x) =
g
(
ϕ(x)

)
, where f is a given analytic function at a and g is the unknown; (3) says

that if there is a formal power series solution g, then there is also an analytic
solution. Condition (4) concerns the m-adic (or Krull) topologies of the local
rings. (The powers mk of the maximal ideal m of R form a fundamental system
of neighbourhoods of 0 for the m-adic topology.) Clearly, mk ⊂ (m′)k ∩ R for
all k, so (4) implies that the m-adic topology of R coincides with its m′-adic
topology as a subspace of R′.

Gabrielov [1973] proved that (1) ⇐⇒ (2) and (2) ⇒ (3). The implication
(3)⇒ (2) follows from [Becker and Zame 1979] and [Milman 1978], and (2)⇐⇒
(4) is due to Izumi [1986], Rees [1989] and Spivakovsky [1990].
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Chevalley estimate. Condition (4) is related to the following elementary lemma
of Chevalley [1943, § II, Lemma 7] (compare [Bierstone and Milman 1998, Lemma
5.2]).

Lemma 3.2. (We use the notation of Theorem 3.1.) For all k ∈ N, there exists
l ∈ N such that if G ∈ Ôb and ϕ̂∗a(G) ∈ m̂l+1

a , then G ∈ Ker ϕ̂∗a + m̂k+1
b .

Given k ∈ N, let lϕ∗(a, k) denote the least l satisfying Chevalley’s lemma. We
call lϕ∗(a, k) a Chevalley estimate. Condition (4) of Theorem 3.1 means there is
a linear Chevalley estimate lϕ∗(a, k) ≤ αk + β′ (where β′ = α+ β − 1).

Question. Suppose that ϕ: M → R
n is a regular mapping (Definition 2.4). Is

there a uniform linear Chevalley estimate lϕ∗(a, k) ≤ αLk + βL, where L ⊂ M

is compact and a ∈ L? This question is equivalent to a uniform version of a
product theorem of Izumi [1985] and D. Rees [1989]; see [Wang 1995], where the
question also is answered positively in a special case.

4. Semicoherent Sets

In this section, we characterize the class of semicoherent subanalytic sets: We
describe several metric, algebro-geometric and differential properties of subana-
lytic sets that might seem of quite different natures, but that turn out each to
be equivalent to semicoherence. The ideas and results here come from [Bierstone
and Milman 1998; Bierstone et al. 1996]. Theorem 4.4 below can be viewed as
a parallel to Gabrielov’s theorem 3.1, but is expressed in terms of properties of
a closed subanalytic set X (i.e., the image X = ϕ(M) of a proper real-analytic
mapping ϕ: M → R

n) rather than in terms of properties of ϕ. The compos-
ite function property (3) of Theorem 3.1 is replaced by an analogous property
concerning composite differentiable functions. According to Theorem 4.4, the
C∞ composite function property depends on the way that the formal local ideals
Fb(X) =

⋂
a∈ϕ−1(b) Ker ϕ̂∗a vary with respect to b ∈ X. The analytic composite

function property (Theorem 3.1(3)), on the other hand, depends on the rela-
tionship between the convergent and formal ideals Kerϕ∗a and Ker ϕ̂∗a. Theorem
4.4 shows that spaces of differentiable functions are natural function spaces on
subanalytic sets.

C∞ composite function problem (Thom, Glaeser). Let M denote a real-
analytic manifold and ϕ: M → R

n a proper real-analytic mapping. Suppose
that f : M → R is a C∞ function. Under what conditions is f a composite
f(x) = g

(
ϕ(x)

)
, where g is a C∞ function on Rn?

An obvious necessary condition is that f be constant on the fibres ϕ−1(b),
where b ∈ X := ϕ(M).

Examples 4.1 (C∞ invariants of a group action). In the early 1940’s,
Whitney proved that every C∞ even function f(x) (of one variable) can be
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written f(x) = g(x2), where g is C∞ [Whitney 1943]. (See Example 4.2 be-
low.) Whitney’s result is the earliest version of the C∞ composite function the-
orem. About twenty years later, Glaeser (answering a question posed by Thom
in connection with the C∞ preparation theorem) showed that a C∞ function
f(x1, . . . , xn) which is invariant under permutation of the coordinates can be
expressed f(x) = g

(
σ1(x), . . . , σn(x)

)
, where g is C∞ and the σi(x) are the ele-

mentary symmetric polynomials [Glaeser 1963]. G. W. Schwarz [1975] extended
these results to a C∞ analogue of Hilbert’s classical theorem on polynomial in-
variants: Hilbert’s theorem says that, on a linear representation of a compact
Lie group, the algebra of invariant polynomials is finitely generated; i.e., there
are finitely many invariant polynomials p1(x), . . . , pr(x) such that any invariant
polynomial f(x) can be written f(x) = g

(
p1(x), . . . , pr(x)

)
, where g is a poly-

nomial. Schwarz’s theorem asserts that a C∞ invariant function f(x) can be
expressed in the same way, with g C∞.

Formal composition. In each of Examples 4.1, f is constant on the fibres of
the mapping (given by the basic invariant polynomials). In general, however,
not every C∞ function f that is constant on the fibres of a proper real-analytic
mapping ϕ: M → R

n can be expressed as a composite f = g ◦ ϕ, where g is
C∞. (Consider, for example, ϕ(x) = x3, f(x) = x.) There is a necessary formal
condition [Glaeser 1963]: The Taylor expansions of f along any fibre ϕ−1(b)
are the pull-backs of a formal power series centred at b; i.e., f ∈

(
ϕ∗C∞(Rn)

)̂
,

where(
ϕ∗C∞(Rn)

)̂
:=
{

f ∈ C∞(M) : for all b ∈ ϕ(M), there exists Gb ∈
Ôb =R[[y−b]] such that f̂a = ϕ̂∗a(Gb), for all a∈ϕ−1(b)

}
.

(Here f̂a denotes the element of Ôa induced by f : the formal Taylor expan-
sion of f at a, with respect to any local coordinate system.) The functions in(
ϕ∗C∞(Rn)

)̂
are “formally composites with ϕ”. (In each of Examples 4.1, the

hypothesis implies formal composition.)
It is easy to see that

(
ϕ∗C∞(Rn)

)̂
contains the closure of ϕ∗C∞(Rn) in C∞(M)

(with respect to the C∞ topology); in fact,
(
ϕ∗C∞(Rn)

)̂
is closed [Bierstone

et al. 1996, Corollary 1.4]. (For a definition of the C∞ topology, see Question
(2) following Theorem 4.4 below.) The composite function property

ϕ∗C∞(Rn) =
(
ϕ∗C∞(Rn)

)̂
depends only on the image X = ϕ(M) and holds, for example, if X is Nash-
subanalytic [Bierstone and Milman 1982]. (The latter and [Bierstone and Milman
1987a; 1987b] are the sources of the ideas involved in Theorem 4.4.)

Example 4.2 (Proof of Whitney’s theorem on C∞ even functions).

Suppose that f(x) is a C∞ function that is even; equivalently, f is formally a
composite with y = x2. We can assume that f is flat at 0 (i.e., f vanishes at
0 together with its derivatives of all orders) as follows: f̂0(x) = H(x2), where
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H ∈ R[[y]]. By a classical lemma of E. Borel, there exists h(y) of class C∞ such
that ĥ0 = H. We can replace f(x) by f(x)− h(x2).

Now let g(y) = f(
√
y), y > 0. Differentiating repeatedly, we have

f(x)
f ′(x)
f ′′(x)

...

 =


1 0 0 · · ·
0 2x 0 · · ·
0 2 4x2 · · ·
...

...
...

. . .



g(x2)
g′(x2)
g′′(x2)

...

 .

For any l, the determinant of the l × l upper left-hand block of the matrix
is clxl(l−1)/2, where cl > 0. By Cramer’s rule, since f is flat at 0, we have
limy→0+ g

(k)(y) = 0, for all k. By L’Hôpital’s rule (compare [Spivak 1994, Chap-
ter 11, Theorem 7]), g extends to a C∞ function that is flat at 0.

Approach to the composite function problem. Our point of view is similar
to that in Example 4.2, and shows how the various properties of semicoherent
sets enter into the composite function problem. Let ϕ: M → R

n be a proper real-
analytic mapping. Suppose f ∈

(
ϕ∗C∞(Rn)

)̂
. Then, for every b ∈ X = ϕ(M),

there exists Gb ∈ Ôb such that f̂a = Gb ◦ ϕ̂a, for all a ∈ ϕ−1(b). But in general
Gb is uniquely determined only modulo Fb(X). A choice of a complementary
subspace Vb to Fb(X) (i.e., Ôb = Fb(X) ⊕ Vb) provides a unique determination
of Gb.

The equation f̂a = G◦ ϕ̂a, where a ∈ ϕ−1(b), implies that f̂a′ = G◦ ϕ̂a′ , for all
a′ in the same connected component of ϕ−1(b) as a [Bierstone and Milman 1998,
Lemma 5.1]. Therefore, to find Gb as above, it is enough to solve the system of
equations

f̂ai = Gb ◦ ϕ̂ai , for i = 1, . . . , s, (4.3)

where there is at least one ai in every component of ϕ−1(b). Since ϕ is a proper
analytic mapping, there is a uniform bound on the number of connected compo-
nents of a fibre ϕ−1(b), over any compact subset of the target.

We argue by successively flattening over a stratification X = ∪Xj (as in Ex-
ample 4.2). To guarantee that the Gb are Taylor expansions of a C∞ function
(at least along a stratum), we need to stratify so that the Vb can be chosen inde-
pendent of b ∈ Xj , and invariant under formal differentiation in Ôb = R[[y − b]].
These properties hold on a stratification by the “diagram of initial exponents”
N
(
Fb(X)

)
(to be described below).

In general, it is not true that in (4.3) the coefficients of Gb of order ≤ k are
determined (modulo Fb(X)) by the coefficients of the f̂ai of order ≤ k. (Even
in Example 4.2 above, l = 2k derivatives of f at 0 are needed to determine
k derivatives of a formal solution H0.) A uniform Chevalley estimate provides
a uniform bound l = l(k,K) on the number of formal derivatives of the f̂ai ,
for i = 1, . . . , s, that are needed to determine the derivatives of order ≤ k of
Gb mod Fb(X), for b in a compact subset K of Rn.
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We can then solve the composite function problem inductively over a stratifica-
tion by the diagram, using Cramer’s rule and a subanalytic version of L’Hôpital’s
rule or Hestenes’s Lemma [Bierstone and Milman 1982, Corollary 8.2; Bierstone
et al. 1996, Proposition 3.4], in a manner similar to Example 4.2.

Chevalley estimate. Let ϕ: M → R
n be a proper real-analytic mapping and

let X = ϕ(M). Theorem 4.4 involves a variant of the Chevalley estimate (as
defined in Section 3) for a fibre, or for the image X. For all b ∈ X and k ∈ N,
we define

lϕ∗(b, k) := min

{
l ∈ N : if G ∈ Ôb and ϕ̂∗a(G) ∈ m̂l+1

a for

all a ∈ ϕ−1(b), then G ∈ m̂k+1
b + Fb(X)

}
,

lX(b, k) := min

{
l ∈ N : if G ∈ Ôb and |T lbG(y)| = o(|y − b|l),

where y ∈ X, then G ∈ m̂k+1
b + Fb(X)

}
,

where T lbG(y) denotes the Taylor polynomial of order l of G. Then lϕ∗(b, k) <∞
because, if a = (a1, . . . , as), where each ai ∈ ϕ−1(b) and some ai belongs to each
component of ϕ−1(b), then lϕ∗(b, k) < lϕ∗(a, k), where

lϕ∗(a, k) := min

{
l ∈ N : if G ∈ Ôb and ϕ̂∗ai(G) ∈ m̂l+1

ai for
i = 1, . . . , s, then G ∈

⋂
i Ker ϕ̂∗ai + m̂l+1

b

}
,

and lϕ∗(a, k) <∞ as in Lemma 3.2. On the other hand, lϕ∗ and lX are equivalent
on compact subsets of X in the sense that, for every compact K ⊂ X, there exists
rK (rK ≥ 1) such that

lX(b, · ) ≤ lϕ∗(b, · ) ≤ rK lX(b, · ),

b ∈ K. These inequalities are consequences of the two metric inequalities

|ϕ(x)− b| ≤ cϕ(K)d(x, a), for b ∈ K,

d
(
x, ϕ−1(b)

)r ≤ cϕ(b,K)|ϕ(x)− b|, for b ∈ K,

where r ≥ 1 and d( · , · ) denotes a locally Euclidean metric on M [Bierstone and
Milman 1998, Lemma 6.5]. The first of these metric inequalities is simple; the
second is an important estimate of Tougeron [1971].

Diagram of initial exponents. Let I be an ideal in the ring of formal power
series R[[y − b]] = R[[y1 − b1, . . . , yn − bn]]. The diagram of initial exponents
N(I) ⊂ Nn is a combinatorial representation of I, in the spirit of the classical
Newton diagram of a formal power series;

N(I) :=
{

expG : G ∈ I \ {0}
}
,

where expG denotes the smallest exponent β of a monomial

(y − b)β = (y1 − b1)β1 · · · (yn − bn)βn
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with nonzero coefficient in the expansion of G (“smallest” with respect to the
lexicographic order of (|β|, β1, . . . , βn), where |β| = β1 + · · ·+ βn). The diagram
N = N(I) has the form N = N + Nn (since I is an ideal); therefore, there is a
smallest finite subset V of Nn such that N = V +Nn. We call the elements of V

the vertices αj of N.
Set suppG := {β : Gβ 6= 0}, where G =

∑
Gβ(y − b)β . Hironaka’s formal

division algorithm [Hironaka 1964; Bierstone and Milman 1987a, Theorem 6.2;
1998, Theorem 3.1] shows that

R[[y − b]] = I ⊕ R[[y − b]]N(I)
,

where
R[[y − b]]N(I) :=

{
G : suppG ∩N(I) = ∅

}
,

and that, if we write
(y − b)αj = F j(y) +Rj(y),

where F j(y) ∈ I and Rj(y) ∈ R[[y−b]]N(I), for every vertex αj , then {F j} is a set
of generators of I [Bierstone and Milman 1987a, Corollary 6.8; 1998, Corollary
3.2]. We call {F j} the standard basis of I. (It is uniquely determined by the
condition that F j−(y−b)αj ∈ R[[y−b]]N(I), for each j.) Since N(I)+Nn = N(I),
it follows that R[[y − b]]N(I) is stable with respect to formal differentiation.

The diagram of initial exponents determines many important algebraic invari-
ants of the ring R[[y − b]]/I; for example, the Hilbert–Samuel function, defined
for k ∈ N by

HI(k) := dimR
R[[y − b]]

I + (y − b)k+1
= #{β ∈ Nn \N(I) : |β| ≤ k},

where (y − b) here denotes the maximal ideal of R[[y − b]].

Characterization of semicoherent sets. Suppose that Z ⊂ X are closed
analytic subsets of Rn. If k ∈ N ∪ {∞}, Ck(X;Z) denotes the algebra of restric-
tions to X of Ck functions on Rn that are k-flat on Z (i.e., that vanish on Z

together with all partial derivatives of orders at most k). If ϕ: M → R
n is a

proper real-analytic mapping such that ϕ(M) = X, we set(
ϕ∗C∞(Rn;Z)

)̂
:=
(
ϕ∗C∞(Rn)

)̂
∩ C∞

(
M ;ϕ−1(Z)

)
.

Theorem 4.4 [Bierstone and Milman 1998; Bierstone et al. 1996]. The following
conditions are equivalent :

(1) X is semicoherent rel Z.

(2) Composite function property . If ϕ: M → R
n is a proper real-analytic map-

ping such that X = ϕ(M), then

ϕ∗C∞(Rn;Z) =
(
ϕ∗C∞(Rn;Z)

)̂
.

(3) C∞(X;Z) =
⋂
k∈N Ck(X,Z).
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(4) Uniform Chevalley estimate. For every compact subset K of X, there is a
function lK : N → N such that

lX(b, k) ≤ lK(k), for all b ∈ K ∩ (X \ Z).

(5) Stratification by the diagram of initial exponents. X has a (locally finite)
subanalytic stratification X =

⋃
Xi such that Z is a union of strata and Nb :=

N
(
Fb(X)

)
is constant on every stratum outside Z.

(6) Stratification by the Hilbert–Samuel function.

The conditions of Theorem 4.4 are satisfied, for example, if X is a closed suban-
alytic set and Z is the set of non-Nash points of X.

Conditions (5) and (6) of the theorem can be replaced by conditions of sub-
analytic semicontinuity that are a priori stronger. Subanalytic semicontinuity
of Nb, for example, means adding to (5) the condition that, if Xj ⊂ Xi, Xj 6⊂ Z,
then Nj ≥ Ni, where, for each i, Ni denotes the value of Nb on Xi, and ≥ is a
natural ordering on the set of all possible diagrams. See [Bierstone and Milman
1998].

If X = ∪Xi is a stratification by the diagram, as in (5), then X satisfies the
formal semicoherence property along every stratum Xi outside Z; in fact, the
standard basis

F ij(b, y) = (y − b)α
ij

+
∑

β∈Nn\Ni

fij,b(b)(y − b)β

(where {αij} denotes the vertices of Ni) provides a semicoherent structure [Bier-
stone and Milman 1998, § 9].

Question 4.5. Suppose that X is a Nash-subanalytic set. Is there a uniform
linear Chevalley estimate lX(b, k) ≤ αKk + βK , where K ⊂ X is compact and
b ∈ K? (A variant of the question in Section 3 above.)

Question 4.6. Functional-analytic characterization of “tame”; for example,
characterization of semicoherent sets by the extension property. Let X be a
closed subanalytic subset of Rn. We say that X has the extension property if
the restriction mapping C∞(Rn)→ C∞(X) has a continuous linear splitting (or
right inverse) E. If X is semicoherent, then there is an extension operator E
[Bierstone and Milman 1998, Theorem 1.23].

The topology of C∞(Rn) is defined by a system of seminorms

‖f‖Kk := sup
y∈K
|β|≤k

∣∣∣∣∂|β|f(y)
∂yβ

∣∣∣∣ ,
where k ∈ N and K ⊂ Rn is compact. The topology of C∞(X) is defined by
the induced quotient seminorms ‖g‖Ll := inf{‖f‖Ll : f ∈ C∞(Rn), f |X = g}. If
X is semicoherent and E: C∞(X)→ C∞(Rn) is an extension operator, then for
every k ∈ N and K ⊂ Rn compact, there exist l = l(K, k) ∈ N, L = L(K, k)
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compact, and a constant c = c(K, k) such that ‖E(g)‖Kk ≤ c‖g‖Ll , for all g ∈
C∞(X). We do not have a precise estimate on l = l(K, k), in general. But, for
example, if X = intX, then there is an extension operator with a linear estimate
l(K, k) = λk, where λ = λ(K) [Bierstone 1978]. In the direction converse to
“semicoherence implies the extension property”, we can prove that if X has
an extension operator with an estimate l(0,K) = 0 on the zeroth seminorms for
every compact K, then there is a uniform Chevalley estimate lX(b, k) ≤ l(K, 2k),
b ∈ K [Bierstone and Milman 1998, Proposition 1.24]. In view of Theorem 4.4, it
is therefore interesting to ask: Does semicoherence imply the extension property
with l( · , 0) = 0?

Acknowledgement. We are happy to thank Paul Centore for drawing Figure 3
on page 157.
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