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Notes on o-Minimality and Variations

DUGALD MACPHERSON

Abstract. The article surveys some topics related to o-minimality, and
is based on three lectures. The emphasis is on o-minimality as an ana-
logue of strong minimality, rather than as a setting for the model theory
of expansions of the reals. Section 2 gives some basics (the Monotonicity
and Cell Decomposition Theorems) together with a discussion of dimen-
sion. Section 3 concerns the Peterzil–Starchenko Trichotomy Theorem (an
o-minimal analogue of Zil’ber Trichotomy). There follows some material
on definable groups, with powerful applications of the Trichotomy Theo-
rem in work by Peterzil, Pillay and Starchenko. The final section introduces
weak o-minimality, P -minimality, and C-minimality. These are analogues
of o-minimality intended as settings for certain henselian valued fields with
extra structure.

1. Introduction

This paper is a survey of selected topics in and around o-minimality. The
emphasis is on analogies with stability theory, and there is little here on analytic
expansions of the reals. On the other hand, there is quite a lot on dimension in
o-minimal and related structures. I have concentrated on algebraic examples.

Section 2 is introductory, and covers definable functions, cell decomposition,
dimension for definable sets, prime models, and definable types. Section 3 is on
groups definable in o-minimal theories: there I describe a trichotomy theorem
due to Peterzil and Starchenko, and consequences, due to them and Pillay, for
definable groups. In Section 4, I leave o-minimality and turn to other settings
(weak o-minimality, C-minimality, P -minimality) which are superficially similar,
and survey some of the main examples and results.

Generally I have omitted proofs, but where possible try to give the idea of a
proof. As a general source for o-minimality, I recommend [van den Dries 1998;
1996]. Much of the material from Section 2 comes from [Knight et al. 1986] and
[Pillay and Steinhorn 1986], and the latter paper gives an excellent introduction
to the subject.
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2. Basics of o-minimality

We consider first-order structures M = (M,< , . . .), where M is the domain,
< is a binary relation symbol interpreted by a dense total order on M , and there
may be other symbols for relations, functions or constants in the language. The
assumption that < is dense is not necessary for all the theory, but holds in the
examples of interest to us. Indeed, by results from [Pillay and Steinhorn 1987;
1988], any discrete o-minimal structure is essentially trivial, in the sense that
definable functions are given piecewise by translations.

Definition 2.0.1. The above structure M is o-minimal if every definable subset
of M is a finite union of singletons and open intervals (with endpoints in M ∪
{∞,−∞}).

Remarks. 1. Here, as throughout these notes, ‘definable’ means ‘definable with
parameters’.
2. It is crucial that the intervals are not just convex sets, but have endpoints in
M ∪ {+∞,−∞}. Without this we have weak o-minimality, with a much weaker
structure theory (see Section 4).
3. There is an obvious question whether, if M is o-minimal and N is elementarily
equivalent to M, then N must also be o-minimal. The answer is positive (see
Remark 2 after Theorem 2.1.3 below).
4. The class of o-minimal structures is closed under reducts (so long as < stays
in the language). Frequently a structure in a rich language is proved to be
o-minimal by quantifier-elimination, and it follows that all reducts (with the
ordering still in the language) are o-minimal. Also, o-minimality is closed under
expansions by constants.
5. The definition says that every definable subset of M is quantifier-free defin-
able just using the symbols = and <. This suggests an analogy with strong
minimality, which says that in all models of the theory, every definable set is
quantifier-free definable just from =.
6. The order topology on M has a uniformly definable basis (of intervals). Like-
wise, the induced topology on Mn has a uniformly definable basis. Hence, given
a definable function f : U → Mn, say, where U ⊂ Mm, the condition ‘f is
continuous at ā’ is first-order expressible, uniformly in ā.
7. Definable continuous partial functions M →M satisfy the intermediate value
property.

Examples. The following structures are o-minimal. I emphasise that there is a
large literature now on the rich supply of o-minimal expansions of the reals, not
touched on here.

1. (Q, <).
2. (Q, < ,+ ).
3. R = (R, < ,+ ,− , · , 0, 1). By Tarski’s quantifier elimination, we need only
check that atomic formulas with parameters define finite unions of intervals. This
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is clear, for one need only consider the formulas
∑n
i=0 aix

i < 0 and
∑n
i=0 aix

i =
0.
4. (R, exp). Here, o-minimality follows from Wilkie’s model-completeness result
[1996].

The following result is at the root of most of the theory of o-minimality.

Theorem 2.0.2 [Pillay and Steinhorn 1986]. Let M be o-minimal , and f :
(a, b) → M be a definable function with domain (a, b) (possibly a = −∞, or
b = ∞). Then there are points a = a0 < · · · < ak+1 = b such that for each
j = 0, . . . , k, the restriction f |(aj ,aj+1) is either constant , or a strictly monotonic
and continuous bijection to an interval .

Sketch Proof. It suffices to prove, for any definable function f : I → M ,
where I is an interval, that

(i) there is an infinite subinterval of I on which f is constant or injective;
(ii) if f is injective, then it is strictly monotonic on a subinterval,
(iii) if f is strictly monotonic, then f is continuous on a subinterval.

For given (i)–(iii), let X be the set of x ∈ (a, b) such that on some open interval
containing x, f is constant, or strictly monotonic and continuous. By (i)-(iii)
above, (a, b) \ X is finite, so we may assume (by throwing away finitely many
points and replacing (a, b) by subintervals) that (a, b)\X = ∅, so f is continuous
on (a, b). There are finitely many possible kinds of local behaviour, so, after
partitioning (a, b) further we may suppose that f has the same local behaviour
throughout (a, b). If, for example, f is locally strictly increasing everywhere,
then it follows easily by o-minimality that f is strictly increasing everywhere.

I sketch a proof of (i) above. We may assume that all sets f−1(x) are finite
(for otherwise by o-minimality some set f−1(x) contains an interval, and f is
constant on this interval). Hence f(I) is infinite, so contains an interval J .
Define g : J → I by g(y) := Min{x ∈ I : f(x) = y}, find an infinite interval
K ⊂ g(J), and observe that f |K is injective. �

Remarks. 1. If M is an expansion of an ordered field, then the notion of differ-
entiability makes sense, and we can sharpen the above theorem to arrange that
f is continuously differentiable on each (aj , aj+1) (see Chapter VII of [van den
Dries 1998]). In fact, for any n, we can arrange that f is C(n) (that is, n times
continuously differentiable) on each (aj , aj+1). However, as n increases we may
need more and more intervals, so we cannot expect to arrange that f is C(∞) on
each interval.
2. Here, as elsewhere in the theory, we have good control over parameters. In
particular, we may choose the ai so that they are definable over the parameters
used to define f .

2.1. Cell decomposition. The notion of o-minimality tells us about definable
sets in one variable. The cell decomposition theorem (and its variants) carry
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such information to definable sets in several variables. I follow the treatment
from [van den Dries 1998].

Given a definable X ⊆Mn, let

C(X) := {f : X →M,f is definable and continuous},

and let C∞(X) := C(X) ∪ {−∞,+∞} (here, ∞ denotes the ‘function’ on X

taking value ∞ everywhere, and −∞ is defined similarly.) Suppose that f, g ∈
C∞(X) and that (∀x̄ ∈ X)(f(x̄) < g(x̄)). Then

(f, g)X := {(x̄, y) ∈ X ×M : f(x̄) < y < g(x̄)}.

Definition 2.1.1. Let (i1, . . . , im) be a sequence of zeros and ones. Then an
(i1, . . . , im)-cell is a definable subset of Mm, defined as follows by induction on
m.

(i) A (0)-cell is a singleton of M , and a (1)-cell is a non-empty open interval,
possibly unbounded.
(ii) Suppose (i1, . . . , im)-cells have been defined. Then an (i1, . . . , im, 0)-cell
is the graph of a function f ∈ C(X), where X is an (i1, . . . , im)-cell. An
(i1, . . . , im, 1)-cell is a set (f, g)X , with X some (i1, . . . , im)-cell and f, g ∈
C∞(X) with f(x̄) < g(x̄) for all x̄ ∈ X.

A cell is an (i1, . . . , im)-cell for some i1, . . . , im ∈ {0, 1}.

Remarks. 1. The numbers i1, . . . , im are uniquely determined by the cell.
2. A cell in Mm is open if and only if it is a (1, . . . , 1)-cell.
3. More generally, let X be an (i1, . . . , im)-cell, let k := i1+· · ·+im, and suppose
we have λ(1) < · · · < λ(k) and iλ(1) = . . . = iλ(k) = 1. Let π : Mm → Mk

project to the λ(1), . . . , λ(k) coordinates. Then π is a homeomorphism onto an
open cell in Mk.
4. Cells are definably connected ; that is, a cell X cannot be expressed as the
disjoint union of two non-empty definable sets which are open in X. If M = R,
then cells are even connected.

Definition 2.1.2. A decomposition of Mm is a partition of Mm into finitely
many cells, defined as follows by induction.

(i) Any partition of M into finitely many disjoint cells is a decomposition.
(ii) A decomposition of Mm+1 is a finite partition of Mm+1 into cells, such that
if π : Mm+1 → Mm is the projection onto the first m coordinates, then the set
of π-projections of the cells forms a decomposition of Mm.

Theorem 2.1.3 [Knight et al. 1986]. For each n > 0, the following statements
hold .

(I)n Given definable A1, . . . , Ak ⊆ Mn, there is a decomposition of Mn which
partitions each of the Ai.
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(II)n Given definable A ⊆ Mn and a definable function f : A → M , there is a
decomposition D of Mn partitioning A, such that for each B ∈ D with B ⊆ A,
f |B : B →M is continuous.
(III)n Suppose that Y ⊆Mn+1 is definable. For any ā ∈Mn, let

Yā := {x ∈M : (ā, x) ∈ Y }.

Then there is a number N (depending on Y ) such that any finite set of the form
Yā has size at most N .

Remarks. 1. If condition (III)n holds for all n for a structure M (not necessarily
o-minimal), then we say that M is uniformly bounded. This is a property of
Th(M), that is, it is preserved by elementary equivalence.
2. Uniform boundedness ensures that if M is o-minimal, and N is elementarily
equivalent to M, then N is o-minimal. For suppose that Y ⊂ N is definable by
a formula φ(x, ā), and let ψ(x, ā) define (uniformly in ā) the boundary of Y . By
uniform boundedness, there is a natural number K such that for any b̄ from M ,
ψ(x, b̄) has at most K realisations. Now Th(M) says this, so it holds in N, so
ψ(x, ā) has at most K realisations, and hence (as Th(M) says that any maximal
convex definable set has a supremum and infimum in M ∪ {∞,−∞}) φ(x, ā) is
a union of finitely many singletons and intervals.
3. If M is an expansion of an ordered field, then for any p > 0 one can require
that the definable functions in the cell decomposition are all C(p).
4. Because of the inductive definition of cells, the cell decomposition theorem
makes possible many proofs by induction on the dimension of a definable set.
5. In (I)n the cells in the decomposition can be chosen definable over the pa-
rameters used to define the Ai (and a similar statement holds for (II)n).

Sketch Proof. The proof of Theorem 2.1.3 is by simultaneous induction on
n. (I)1 holds by definition of o-minimality, and (II)1 follows by the Monotonicity
Theorem, whilst (III)1 requires a direct argument which is really the crux of the
whole proof, but which we omit. At the inductive step, we prove:

(I)m, (II)m, (III)m (for m < n) =⇒ (I)n.
(I)m (for m ≤ n), (II)m (for m < n) =⇒ (II)n.
(I)m, (II)m (for m ≤ n) and (III)m (for m < n) =⇒ (III)n.
I sketch the proof of (I)n. For simplicity we suppose that k = 1 and A := A1

(as the general case is similar). Let π : Mn → Mn−1 drop the last coordinate,
and for each ā ∈ π(A) consider the fibre Aā := {y ∈M : (ā, y) ∈ A}, a definable
subset of M . By o-minimality, Aā is a finite union of singletons and intervals,
and by (III)n−1 there is a bounded number of these. Inductively, we use (I)n−1

to decompose the base, partitioning π(A), to ensure that, for each cell of the
base, all fibres Aā look the same as ā ranges through the cell. (Essentially,
this means that all these fibres must have the same number of singletons and
intervals, occurring in the same order.) Hence there are finitely many definable
partial functions Mn−1 → M picking out these singletons and the endpoints of
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the intervals, and by (II)n−1 we can ensure that these functions are continuous,
partitioning the base further if necessary. Now piece this information together.

The proof of (II)n is also relatively straightforward, but requires the Mono-
tonicity Theorem (not just piecewise continuity of unary functions). The idea
is to reduce to the situation where for any ā ∈ Mn−1, the partial function
f(ā, y) : M → M is continuous and monotonic (where defined), and for any
b ∈M , the function f(x̄, b) : Mn−1 →M is continuous where defined.

The proof of (III)n is intricate. �

2.2. Definable closure and dimension. The next task is to describe di-
mension in o-minimal structures, in a way relevant also to Section 4. For an
alternative treatment of model-theoretic dimension, see [van den Dries 1989].

Recall that if A ⊂ M then the algebraic closure acl(A) of A is the union of
the finite A-definable sets, and the definable closure dcl(A) is the union of the
finite A-definable singletons. In general, dcl(A) ⊆ acl(A), but in an o-minimal
structure M, they are equal (because in a finite set, we can define the least
element, the next least element, and so on).

Notation. If A ⊆ M and ā ∈ Mn with ā = (a1, . . . , an), I abuse notation by
writing Aā for A ∪ {a1, . . . , an}.

Definition 2.2.1. A pregeometry on a set X is a function cl : P(X) → P(X)
(where P(X) denotes the power set of X) which satisfies the following conditions:

(i) for all A ⊆ X, A ⊆ cl(A);
(ii) for all A ⊆ X, cl(cl(A)) = cl(A);
(iii) for all A ⊆ X, cl(A) =

⋃
{cl(F ) : F ⊆ A,F finite};

(iv) (exchange) if A ⊆ X and b, c ∈ X with b ∈ cl(Ac) \ cl(A), then c ∈ cl(Ab).

In any structure, not necessarily o-minimal, algebraic closure satisfies (i)–(iii),
and we show next that in the o-minimal case (iv) holds also. The exchange
property holds in many other nice model-theoretic classes (for example strongly
minimal sets, and some of the structures discussed in Section 4 below).

Theorem 2.2.2 [Pillay and Steinhorn 1986]. Let M be o-minimal , A ⊆M , and
b, c ∈M . If b ∈ dcl(Ac) \ dcl(A), then c ∈ dcl(Ab).

Proof. We may suppose the base set A = ∅ (by adding constants for elements
of A to the language), so that b ∈ dcl(c)\dcl(∅). There is a 0-definable (partial)
function f : M → M with b = f(c). We apply the Monotonicity Theorem to f .
Since b 6∈ dcl(∅), c lies in the interior of an open 0-definable interval I on which
f is strictly monotonic. Now J := f(I) is 0-definable, and since c := f |−1

J (b),
c ∈ dcl(b). �

Theorem 2.2.2 gives us an important notion of dimension in o-minimal structures.
Much of what follows is folklore, and possible sources are [Pillay 1988; Hrushovski
and Pillay 1994]. We do not restrict to o-minimal structures in 2.2.3 and 2.2.5–
2.2.8 below.
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Definition 2.2.3. A first-order structure M is geometric if algebraic closure
has the exchange property (so defines a pregeometry) in all models of Th(M),
and M is uniformly bounded.

From Theorems 2.1.3 (III) and 2.2.2, we now have

Corollary 2.2.4. Every o-minimal structure is geometric.

There is a general dimension theory for geometric structures which I now sketch
(some of it does not require uniform boundedness). First, observe that in a
geometric structure M, there is a general notion of independence: I ⊆ M is
independent if, for all x ∈ I, x 6∈ acl(I \ {x}). If A ⊆ M , then we can also talk
of I being ‘independent over A’ (regard the elements of A as being interpreted
by new constants). If A ⊆ M is algebraically closed, then any two maximal
independent subsets of A have the same size (by the proof that any two bases of
a vector space have the same size), and we may call this size the rank of A (but
we will not use this).

Definition 2.2.5. Let M be geometric, A ⊆M , and ā ∈Mn. Then dim(ā/A) is
the least cardinality of a subtuple ā′ of ā such that ā ⊆ acl(Aā′). If p(x̄) ∈ Sn(A)
(the set of complete n-types over A), then dim(p) = dim(ā/A), for any ā realising
p in an elementary extension of M.

Lemma 2.2.6 [Pillay 1988]. Let M be a geometric structure.

(i) dim(ā/A) is the cardinality of any maximal independent (over A) subtuple of
ā.
(ii) If A ⊆ B then dim(ā/A) ≥ dim(ā/B);
(iii) dim(āb̄/A) = dim(ā/Ab̄) + dim(b̄/A);
(iv) If p(x̄) ∈ Sn(A) and A ⊆ B then there is p′(x̄) ∈ Sn(B) such that p ⊆ p′

and dim(p) = dim(p′).

Remark. In the above, we can think of p′ as a kind of ‘non-forking extension
of p’, but we cannot control the number of non-forking extensions. For example,
in the o-minimal structure (Q, <), if p is the unique 1-type over ∅, then any
of the 2ℵ0 non-algebraic extensions of p over Q is non-forking in this sense.
Furthermore, the ‘type amalgamation condition’ or ‘independence theorem’ of
simple theories (see Theorems 3.5 and 5.8 of [Kim and Pillay 1997]) cannot hold
in any o-minimal structure.

We can also use algebraic closure to obtain a notion of dimension for definable
sets, mimicking Zariski dimension for constructible sets in algebraically closed
fields. In 2.2.7–2.2.10, we shall assume that M is sufficiently saturated ; that is,
|A|+-saturated for any parameter set A which we might care to mention. This
will ensure that certain tuples in a definable set exist in our model. Without
the saturation assumption, we can still define dimension for definable sets, but
have to quantify over elementary extensions of the model, as a realisation in



104 DUGALD MACPHERSON

the definable set of the appropriate dimension may not exist in the model. It is
simplest, whenever talking of generics and dimension in definable sets, to assume
enough saturation.

Definition 2.2.7. Let M be geometric and sufficiently saturated, and X ⊆
Mn be A-definable. Then dim(X) := Max{dim(ā/A) : ā ∈ X} (so dim(X) =
Max{dim(p) : p ∈ Sn(A), p realised in X}). In particular, if ā ∈ X, then ā is a
generic of X over A (and tp(ā/A) is a generic type in X over A), if dim(ā/A) =
dim(X).

There is a possible confusion here, since the notion of rank defined after Corol-
lary 2.2.4 is sometimes called dimension. The ordered field of reals has rank
2ℵ0 (its transcendence degree) but dimension 1 (as a set defined by the formula
x = x).

Example. In the ordered field R, if A is a finite subset of R, and ā ∈ Rn, then
dim(ā/A) is the transcendence degree of Q(A)(ā) over Q(A). Hence, if X is a
definable subset of Rn, then dim(X) is the algebraic-geometric dimension of the
Zariski closure of X in Rn.

We sometimes call the above notion of dimension geometric dimension, to dis-
tinguish it from another (topological) notion defined after Lemma 2.2.8. It is
easily checked that this definition is independent of the choice of the defining set
A, provided |A| is not too large. The following lemma lists some properties of
this dimension. Uniform boundedness is used essentially in (iv).

Lemma 2.2.8. Let M be a sufficiently saturated geometric structure.

(i) dim({a}) = 0 (for a ∈M) and dim(M) = 1.
(ii) If X,Y ⊆Mn are definable, then dim(X ∪ Y ) = Max{dim(X),dim(Y )}.
(iii) dim is invariant under permutation of coordinates.
(iv) (Definability of dimension.) Let X ⊆ Mm+n be definable, and for each
ā ∈ Mm let Xā := {ȳ ∈ Mn : (ā, ȳ) ∈ X}. For each i = 0, . . . , n let X(i) :=
{x̄ ∈Mm : dim(Xx̄) = i}. Then each set X(i) is definable, and for each i,

dim({(x̄, ȳ) ∈ X : x̄ ∈ X(i)}) = dim(X(i)) + i.

(v) If f : Mn → Mm is a definable partial function, and A ⊆ Mn is definable,
then dim(f(A)) ≤ dim(A), with equality if A is injective. In particular , definable
bijections preserve dimension.

In a strongly minimal structure M (which is geometric), a definable subset of
Xn has (geometric) dimension equal to its Morley rank.

In a structure M which carries a topology with a uniformly definable basis,
there is also a notion of topological dimension for definable sets. If X ⊆ Mn

is definable, then the topological dimension tdim(X) is the greatest k ≤ n such
that for some projection π : Mn → Mk, π(X) has non-empty interior in Mk.
The following is quite easy to prove.
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Theorem 2.2.9. Let M be o-minimal , and X ⊆ Mn a definable set . Then
dim(X) = tdim(X).

If X is A-definable, and b̄ ∈ X, then b̄ is a generic of X over A if and only if
b̄ does not lie in any A-definable set of dimension less than dim(X). The last
theorem gives the following useful topological characterisation of genericity. It
says, very roughly, that if an A-definable property holds of a generic over A,
then it holds throughout a neighbourhood of it in the definable set.

Lemma 2.2.10. Let M be o-minimal , X ⊂ Mn be A-definable, and b̄ be a
generic of X over A. Then dim(X) = k if and only if there is an open rectan-
gular neighbourhood Y ⊂ Mn of b̄ and a projection π : Mn → Mk inducing a
homeomorphism from X ∩ Y onto an open subset of Mk.

In any o-minimal expansion of the ordered set of reals (in a countable language),
any definable set X has a generic in the model over any countable set of param-
eters, even though (R, <) is not ω1-saturated. This is easy to prove using the
Baire Category Theorem and the fact that dim(X) = tdim(X) (see Lemma 2.17
of [Hrushovski and Pillay 1994]).

Finally, I give a rapid consequence of the cell decomposition theorem. If
Y ⊆ X ⊆Mn, we say that Y is large in X if dim(X \ Y ) < dim(X).

Lemma 2.2.11. Let M be o-minimal , D be a subset of Mk with dim(D) = k, and
f : D → Mn be a definable function. Assume that both D and f are definable
over a set A. Then there is an A-definable large subset S of D, open in Mk,
such that f |S is continuous. In addition, if M expands a real closed field , then
for any k > 0, we can choose S so that f is C(k) on S.

2.3. Prime models.

Definition 2.3.1. A model M is prime over a subset A if for every N |=
Th(M,a)a∈A, there is an elementary embedding f : M → N over A.

By a result of Shelah, prime models exist (and are unique up to isomorphism over
A) over arbitrary sets A in ω-stable theories. In particular, in an algebraically
closed field, the prime model over a set A is just its field-theoretic algebraic clo-
sure. Prime models are a tool for classification of the models in certain classes of
ω-stable theories (for example, uncountably categorical theories). The following
result draws out the analogy between o-minimality and stability.

Theorem 2.3.2 [Pillay and Steinhorn 1986]. If M is o-minimal , and A ⊆ M ,
then Th(M) has a prime model over A, unique up to A-isomorphism.

We shall denote the prime model over A by M(A), or M(ā) if A is a tuple ā.

Sketch Proof. For existence, it suffices, by general model theory, to show
that isolated types are dense in the Stone space S1(A); that is, for any formula
φ(x) over A there is a formula ψ(x) over A such that
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(i) M |= ∀x (ψ(x)→ φ(x)), and
(ii) ψ(x) isolates a complete type over A.

But this is straightforward: we may suppose that φ(x) defines an interval I;
either this interval is already a complete type over A, or some A-formula defines
a proper subinterval, in which case an endpoint in I of that subinterval will be
A-definable, so realise a complete type over A.

The proof of uniqueness of prime models is much harder, and is omitted. An
easy back-and-forth argument ensures that any two countable prime models over
A are A-isomorphic. �

The o-minimal structures most commonly considered are expansions of ordered
groups. If M is an expansion of an ordered group with at least two 0-definable
elements (for example, if M expands an ordered field), then we may uniformly
pick the midpoint of a bounded interval. Likewise, since there is a positive 0-
definable element a, in any unbounded interval (x,∞) we may uniformly pick
out x+ a, and in (−∞, x) we may pick out x− a. This means that Th(M) has
definable Skolem functions; for in an ā-definable set we may pick out a cell, then
a midpoint b1 of its projection onto the first coordinate, then a midpoint b2 of
the first coordinate of the fibre above b1, and so on (only using the parameters
ā). The existence of definable Skolem functions ensures that the prime model
over A is precisely dcl(A). Thus for example, in the ordered field R, the prime
model over a set A is precisely its real closure. Incidentally, the above hypotheses
on M also ensure that Th(M) has elimination of imaginaries. This is because,
given a 0-definable equivalence relation, by the above we can uniformly pick out
an element of each equivalence class.

There are also good prime model theorems in some other classes of unstable
algebraic structures. For example, in Th(Qp), the prime model over a set is just
its p-adic closure.

2.4. Definable types

Definition 2.4.1. Let M be an ordered structure. Then a cut of M is a
maximal consistent set of formulas each of the form a < x or x < a (where
a ∈M).

Lemma 2.4.2 [Pillay and Steinhorn 1986]. Suppose M is o-minimal . Then for
each cut of M there is a unique 1-type over M extending it .

Proof. Let C be a cut of M , and let φ(x) be a formula over M such that φ is
consistent with C. Now φ partitions M into intervals, and by o-minimality, only
one of these intervals is consistent with C. Hence, just one of φ, ¬φ is consistent
with C. �

The following definition is usually associated with stability theory.
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Definition 2.4.3. A type p(x̄) ∈ Sn(A) (where A is a subset of an ambient
structure M) is definable if, for every formula φ(x̄, ȳ) over ∅, there is a formula
ψ(ȳ) over A, such that for any tuple ā from A, φ(x̄, ā) ∈ p if and only if M |= ψ(ā).

Observe that if A is b̄-definable, and all types over A realised in M are definable,
then for each n every M-definable subset of An is Ab̄-definable.

If C is a cut of M , then a ∈M is a standard part of C (written a = st(C), or
a = st(b), if b realises C) if, for any b realising C (in an elementary extension),
there is no element of M between a and b. Now we easily obtain the following.

Lemma 2.4.4. If R is an o-minimal expansion of R, then every 1-type over R
is definable.

Proof. If the 1-type p over R is algebraic (i.e. realised in R) this is obvious, so
suppose that p is non-algebraic. Then either p is the unique type consisting of
infinitely large or infinitely small elements, or determines a cut bounded above
and below by elements of R. If say p is the type consisting of infinitely large
elements, then for any formula φ(x, ȳ), and any ā from R, φ(x, ā) ∈ p if and only
if φ(x, ā) holds on a cofinal subset of R, so the set of such ā is R-definable. In p
determines a bounded cut C, then, as R is Dedekind complete, C has a standard
part, and we may use this to define p. �

We can extend this slightly. Suppose M � N, both o-minimal, and b ∈ N \M
with tp(b/M) definable. Then {x ∈ M : x < b} and {x ∈ M : b < x} are M -
definable. It follows by o-minimality that b has a standard part in M . The most
general statement of this form is the following, proved in [Marker and Steinhorn
1994], and given a different treatment in [Pillay 1994].

Theorem 2.4.5 [Marker and Steinhorn 1994]. Let M be o-minimal , and let
p(x̄) ∈ Sn(M). Then p is definable if and only if , for every ā realising p over
M , M is Dedekind-complete in M(ā), that is, every non-algebraic 1-type over
M which is realised in the prime model M(ā) over Mā has a standard part in
M .

3. Definable groups and fields, and a trichotomy theorem

3.1. Ordered groups and fields, and a Trichotomy Theorem. The
main goal of this section is to describe a Trichotomy Theorem of Peterzil and
Starchenko, and some results of them and Pillay on definably simple groups in
o-minimal structures. I begin with two elementary results.

Proposition 3.1.1 [Pillay and Steinhorn 1986]. Let G be an o-minimal or-
dered group (so the group operation is part of the language). Then G is divisible
abelian.

Proof. We first claim that G has no proper non-trivial definable subgroups.
For let H be such a subgroup. As G is torsion-free, H is infinite, so contains
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an infinite interval J , and hence has a maximal non-trivial interval about 0,
of the form [−h, h] or (−h, h). Both cases are easily eliminated. For example,
if J = (−h, h), pick h′ such that 0 < h′ < h, and observe that both h′ and
h− h′ ∈ H, so h ∈ H, a contradiction.

Given the claim, G is abelian (for the centraliser of any element is a non-
trivial and definable subgroup, so equal to G). For any n > 0, nG is a definable
subgroup of G, which cannot be {0} (as G is torsion-free), so equals G. Hence
G is divisible. �

Proposition 3.1.2 [Pillay and Steinhorn 1986]. Let R be an o-minimal ordered
field . Then R is real closed , that is, elementarily equivalent to the reals.

Proof. It suffices to show that polynomials satisfy the intermediate value the-
orem. But this follows immediately from o-minimality. �

Question 1. Is there a sense in which an o-minimal structure is either ‘trivial’
(like (Q, <)), or grouplike, or fieldlike?

Question 2. What can we say about definable groups, or fields, in an o-
minimal structure? (Note that by a remark after Theorem 2.3.2, many o-minimal
structures, such as expansions of ordered fields, admit elimination of imaginaries,
and in such structures definability is equivalent to interpretability.)

Question 1 suggests the Zil’ber Conjectures for strongly minimal sets, another
class of geometric structures — see the discussion before Theorem 3.1.6 for more
on these conjectures. However, there is a major difference. For among other
things these conjectures asserted that a (strongly minimal) algebraically closed
field has no proper expansions other than those obtained by naming constants.
Under extra hypotheses, positive results in this direction are obtained in work
on Zariski structures [Hrushovski and Zilber 1996], and the only known counter-
examples are artificial [Hrushovski 1992]. On the other hand, the field of reals
has many natural o-minimal proper expansions, such as the real exponential
field.

Any answer to Question 1 has to be local. For example, one could form an o-
minimal structure with three parts, L (the leftmost part), M (the middle part),
and R (the right part), with L carrying the structure of a pure dense linear order,
M that of a divisible ordered abelian group, and R that of a real closed field (it
is necessary to put a point between L and M , and one between M and R, to
ensure o-minimality). And indeed, M might just be an interval of an ordered
group, with the induced structure.

I will describe a beautiful answer to Question 1. It is the main theorem of
[Peterzil and Starchenko 1998].

Definition 3.1.3. Let M be o-minimal, and a ∈M .
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(i) The point a is non-trivial if there is an open interval I ⊂M such that a ∈ I,
and a definable continuous function I × I → M which is strictly monotonic in
each variable.
(ii) A convex

∧
-definable group in M is a group (G, ∗), where G ⊆M is convex,

and the group operation ∗ (regarded as a ternary relation) is the intersection of
a definable set with G3.
(iii) If (G,< ,+ , 0) is a convex

∧
-definable group, and p ∈ G with p > 0, then

a group interval is a structure ([−p, p], < ,+ , 0), where + is the induced partial
function [−p, p]× [−p, p]→ [−p, p].
(iv) If I is an interval of M , then M|I is the structure with domain I, whose
0-definable sets are those of the form Ik ∩ U for definable U ⊆ Mk (in fact, by
Lemma 2.5 of [Peterzil and Starchenko 1998], if I is closed then such sets are
I-definable).

Note that the domain of a convex infinitely definable group is an intersection
of intervals, but may not be definable. The model theory of group intervals in
o-minimal structures was described in [Loveys and Peterzil 1993]. They are all
elementarily equivalent, essentially, because in (Q, < ,+ ), all positive elements
have the same type.

It is easy to see that if (G, ∗) is a convex
∧

-definable ordered group in M , and
a ∈ G, then ∗ witnesses that a is non-trivial. The following converse is much
deeper.

Theorem 3.1.4 [Peterzil and Starchenko 1998]. Let M be ω+-saturated , and
a ∈M be non-trivial . Then there is a convex

∧
-definable infinite group G ⊆M ,

such that a ∈ G and G is a divisible ordered abelian group.

In particular, even without the saturation assumption, there is a closed interval
I with a ∈ I ⊂ M , and a definable group interval structure induced on I.
Saturation enables us to find the whole domain of a group, on say an infinitesimal
neighbourhood (with respect to an elementary substructure) about a, but this
infinitesimal neighbourhood may not be definable.

Theorem 3.1.5 [Peterzil and Starchenko 1998]. Suppose that (I,< ,+ , 0) is
a 0-definable group interval in a sufficiently saturated o-minimal structure M.
Then precisely one of the following statements holds.

(i) There is an ordered vector space V = (V,+ , c, d(x))c∈C,d∈D (with C a set
of constants) over an ordered division ring D, an interval [−p, p] in V , and an
order-preserving isomorphism of group-intervals σ : I → [−p, p], such that σ(S)
is 0-definable in V for every 0-definable S ⊆ In.
(ii) There is a real closed field R definable in M with its domain a subinterval
of I and its order compatible with <.

The point is that in (i), the division ring D is not a definable structure, so V is
essentially a ‘pure’ linear structure. I emphasise that in (ii) we get the whole of
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a field, not just a field interval. Incidentally, if every point of M is trivial, then
by [Mekler et al. 1992], every definable set is a boolean combination of binary
relations.

I describe next an alternative, more algebraic-geometric, treatment of this
theorem, given in the introduction to [Peterzil and Starchenko 1998].

Let M be a geometric structure (see Definition 2.2.3). A curve is a 1-
dimensional subset of M2. A set F of curves is said to be definable if there
are definable U ⊆ Mk and F ⊆ U ×M2 such that F = {Cū : ū ∈ U}, where
Cū := {(x, y) : (ū, x, y) ∈ F}. We say Cū is generic in F if ū is generic in U

over any relevant parameters. Also, F is normal of dimension n if dim(U) = n

and Cū ∩ Cv̄ is finite for any distinct ū, v̄ in U . There is a similar notion of
interpretable normal family of curves.

In a geometric structure M, one of the following must hold.

(Z1) If F is an infinite interpretable normal family of curves, and C ∈ F is
generic, and (a, b) is generic in C, then either dim(C ∩ ({a} ×M)) = 1 or
dim(C ∩ (M × {b})) = 1.

(Z2) (Z1) fails, but every interpretable normal family of curves has dimension
at most 1.

(Z3) There is an interpretable normal family of curves of dimension greater
than 1.

Zil’ber’s Conjecture (which is false in general, though parts are true) was that in
the strongly minimal case, (Z1) should correspond to the case when there are no
interpretable groups, (Z2) to the case when definable sets arise from a module,
and the structures satisfying (Z3) should be bi-interpretable with (or at least
interpret) an algebraically closed field. If M is a group, then (Z1) is clearly false
(consider for each g ∈ G the curve Cg := {(x, y) : xg = y}). Likewise, if M is
a field, then for each a, b ∈ M we have a curve {(x, y) : y = ax + b}, and this
family of curves has dimension 2.

Suppose now that M is o-minimal. It is quite easy to see that a ∈M is trivial
if and only if some induced structure M|I on a neighbourhood of a has type
(Z1). If a ∈M is non-trivial, we say a has type (Z2) if there is an open interval
I containing a such that the induced structure M|I satisfies (Z2), and that a has
type (Z3) otherwise. Now we can state the following version of the trichotomy
theorem (which gives more of a guide to its proof).

Theorem 3.1.6 [Peterzil and Starchenko 1998]. Let M be sufficiently saturated
and o-minimal , and a ∈M be non-trivial . Then either

(a) a has type (Z2) and the structure induced on some closed interval I (whose
interior contains a) satisfies Theorem 3.1.5(i), or
(b) a has type (Z3), and some open interval containing a satisfies Theorem
3.1.5(ii).
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Remarks on the proof of Theorem 3.1.4 and 3.1.5. First of all, a general
mechanism for defining groups is given. Given a definable normal family of
dimension greater than one of functions on an interval I, one can obtain, for some
open interval J ⊂ I, a very well-behaved ‘nice’ family of functions of dimension
2, parametrised by an open subset of I2. It turns out that this is a powerful
abstract notion: in the final section of the paper, it is shown that without any
algebraic assumptions one can use a nice family of functions to define tangency,
and develop elementary differential calculus - the nice family replaces the family
of functions of form f(x) = ax+ b in the usual definition of differentiation. For
such a nice family, there is a technical device for defining a certain quaternary
relation (a ‘q-relation’) on a convex subset of I, and from this a convex

∧
-

definable ordered group (assuming enough saturation). The arguments here are
similar to familiar group constructions in stable theories. One starts with a
family F of functions from a set A to a set B, and by taking compositions fg−1

obtains a family of partial definable functions B → B. The defining parameters
for these compositions (taken up to some equivalence relation corresponding
to tangency at a ‘fixed’ generic point) are projected to an interval to obtain
the convex

∧
-definable ordered group, and the group operation is essentially

composition of functions. To prove Theorem 3.1.4, one takes a definable function

F : I × I →M

which witnesses non-triviality of a (here, a ∈ I). Massaging this function using
composition, a function G(x, y, z) is obtained, defined on an open subset of I3,
continuous, and strictly increasing in each variable. This gives either a situation
where methods from [Peterzil 1994] apply, or a normal family of functions of
dimension 2. Either way, a group interval is obtained.

Assume now that a is non-trivial but the conclusion of Theorem 3.1.5(i) does
not hold around a. By the last paragraph, there is an interval I containing
a such that the structure induced on I is an o-minimal expansion of a group
interval. Furthermore, by our case assumption and Proposition 4.2 of [Loveys
and Peterzil 1993], there is a definable function on a subinterval J of I which is
not ‘linear’ on any subinterval of J . One can use this to construct a new nice
family of curves. From a nice family living on a group interval, one can construct
two different q-relations, one using the operation of the group interval, the other
using composition. From this, it is possible to define on a convex subset of I
two new groups G, H, corresponding to field addition and multiplication. It is
also possible to define a continuous faithful action H on G. (Care is needed with
the notion of definability, as G and H are convex

∧
-definable ordered groups,

but are not in general definable.) This gives a certain convex
∧

-definable ring of
definable endomorphisms. The fraction field is a real closed field, which turns out
to be definable, essentially, because any element of the fraction field is represented
by infinitely many pairs from the ring, and some of these pairs lie in arbitrary
small boxes J × J , where J is an interval about a. �
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I conclude this subsection by stating a global dichotomy theorem of Miller and
Starchenko which looks similar to Theorem 3.1.5, but is global rather than local.
If G = (G,< ,+ , . . .) is an expansion of an ordered group, we say that G is
linearly bounded if for any definably function f : G → G there is a definable
endomorphism λ of G such that |f(x)| ≤ λ(x) for sufficiently large x.

Theorem 3.1.7 [Miller and Starchenko 1998]. Let R = (R,< ,+ , . . .) be an
o-minimal expansion of an ordered group. Then if R is not linearly bounded ,
there is a definable binary operation · such that (R,< ,+ , ·) is an ordered field .

3.2. Definable groups and fields. I first describe some results from [Pillay
1988], based on the dimension theory of Section 2. I begin with Proposition 1.8
of that reference, which is based on Proposition 2.1 of [Pillay 1986].

Lemma 3.2.1. Let M be o-minimal , and X ⊆ Mn. Then dim(X) ≥ k + 1 if
and only if there is a definable equivalence relation E on X with infinitely many
classes of dimension at least k.

Here, the left-to-right direction is trivial and holds for topological dimension in
any reasonable class of structures. The right-to-left direction, however, is specific
to o-minimality, and fails for the classes considered in Section 4.

Corollary 3.2.2 [Pillay 1988]. Let G ⊆ Mn be a group definable in an o-
minimal structure, that is, the group and its operation are definable. Then if
H ≤ G is definable, then dim(H) = dim(G) if and only if |G : H| <∞.

Proof. If |G : H| =∞, then as the cosets of H form the classes of a definable
equivalence relation on G, dim(H) < dim(G) by Lemma 3.2.1. The other direc-
tion follows from Corollary 2.2.8, parts (ii) and (v). �

I now describe some results from [Pillay 1988], extended slightly in [Otero et al.
1996] and [Peterzil et al. 2000] (whose terminology I follow). Fix an o-minimal
structure M, and p ≥ 0 (if p > 0, then we assume that M expands a real closed
field). Let X be a definable set. We wish to endow X with a kind of manifold
structure.

A definable chart on X is a triple c = 〈U, φ, n〉, where U is a definable subset
of X, n ≥ 0, and φ is a definable bijection from U to an open subset of Mn. Two
charts c = 〈U, φ, n〉 and c′ = 〈U ′, φ′, n′〉 are C(p)-compatible if either U ∩U ′ = ∅,
or φ(U ∩U ′), φ′(U ∩U ′) are open, and the transition mappings φ ◦φ′−1, φ′ ◦φ−1

are C(p) on their domains. A definable C(p)-atlas on X is a finite pairwise C(p)-
compatible set of definable charts covering X. A definable C(p)-manifold is a
pair consisting of X, and a definable C(p)-atlas on X. Note that given a definable
manifold on X, we can talk about the dimension at any point of X.

Using the charts as coordinate systems, one can talk about a definable C(p)-
function between manifolds, and (if p > 0) its differential at a point (a linear
map given by a matrix of partial derivatives). The following result is essentially
Proposition 2.5 of [Pillay 1988] (for the case p > 0, it was stated in [Otero et al.
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1996], but the proof is essentially that of [Pillay 1988]). Behind the proof lies
Lemma 2.2.11.

Theorem 3.2.3. If G is a group definable in an o-minimal structure M, then
there is an atlas on G making G into a definable C(p)-group, i .e., the group
operation G×G→ G, and inversion, are C(p).

As a corollary in the case p = 0, it follows (see [Pillay 1988]) that if G is as in the
theorem, then G has a unique smallest definable subgroup Go of finite index, and
that this is also its connected component in the above manifold topology. Fur-
thermore, by this and Lemma 3.2.1 again, G has the descending chain condition
on definable subgroups; in particular, if X ⊆ G then there is finite X0 ⊆ X such
that CG(X) = CG(X0), so centralisers are definable. Thus, definable groups in
o-minimal structures share many properties of groups of finite Morley rank.

Analogous results are shown in [Pillay 1988] to hold for definable fields, and
yield (quite rapidly) that any definable infinite field in an o-minimal structure
is real closed of dimension 1 or algebraically closed. In the algebraically closed
case, by an easy Euler characteristic argument the characteristic is 0, and in fact
the field has dimension 2 [Peterzil and Steinhorn 1999]. (The Euler characteristic
argument is suggested by the beautiful paper [Strzebonski 1994], which develops
a Sylow theory based on Euler characteristic for groups definable in o-minimal
structures.) More precisely, it is shown in Theorem 4.1 of [Peterzil and Steinhorn
1999] that if K is any infinite definable ring without zero-divisors in an o-minimal
structure M, then K is a division ring and there is a one-dimensional M-definable
subring R of K which is a real closed field such that K is either R, or R(i) (where
i denotes

√
−1)), or the ring of quaternions over R. Earlier, under the additional

assumption that M is an o-minimal expansion of a real closed field R0, it was
shown in [Otero et al. 1996] that such a ring K is definably isomorphic to R0, or
R0(i), or the quaternions over R0.

All this suggests that an o-minimal analogue of Cherlin’s Conjecture might
hold. This conjecture states that any infinite simple group of finite Morley rank
is definably isomorphic to a simple algebraic group over an algebraically closed
field. Such a result has now been proved, by Peterzil, Pillay and Starchenko
[Peterzil et al. 2000], and for the rest of this section I sketch it and the finer
structure theory from [Peterzil et al. 1997]. These notes also use the summary
[Peterzil et al. 1998].

Before stating the main theorem of [Peterzil et al. 2000], we need some defi-
nitions. Let R be an o-minimal expansion of a real closed field. In the context
of R, a semialgebraic set or group is just a set or group definable in the pure
field R0 := (R,< ,+ , ·). A semialgebraic linear group over R is a subgroup of
GL(n,R), for some n, which is definable in R0. It is semialgebraically connected
if it has no proper semialgebraic subgroup of finite index. If H ≤ GL(n,R) is
a semialgebraic linear group over R, then H has Zariski closure in GL(n,R(i))
defined over R by the vanishing of polynomial equations. We let H̄ denote the
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subgroup of this Zariski closure consisting of matrices with entries in R. Clearly
we have H̄ ≤ GL(n,R), and H and H̄ both have a dimension in the sense of Def-
inition 2.2.7. These dimensions are equal to the algebraic-geometric dimension
of H̄, and so equal to each other. Hence, by Corollary 3.2.2, |H̄ : H| <∞.

If G = (G, ·) is a group definable in a structure M, then we say that G is
definably simple if G has no proper non-trivial M-definable normal subgroups,
and that G is G-definably simple if it has no proper non-trivial normal subgroups
which are definable just in the structure G (so G-definable simplicity is the
weaker condition). Likewise, G is definably connected if it has no proper definable
subgroups of finite index, and G-definably connected if it has no such subgroups
definable in the structure G. In general, ‘definable’ means ‘definable in the sense
of M’.

Now I state the main theorems of [Peterzil et al. 2000].

Theorem 3.2.4. Assume that G is an infinite G-definably connected group
definable in an o-minimal structure M, with no non-trivial abelian normal sub-
group. Then there is k > 0, and for each i = 1, . . . , k a definable real closed field
Ri, a G-definable subgroup Hi ≤ G, and a definable isomorphism between Hi

and a semialgebraic subgroup of GL(n,Ri), such that G = H1 × · · · ×Hk. Each
Hi is Hi-definably simple, and its definably connected component in the sense of
M is definably simple.

Theorem 3.2.5. Let G be a non-abelian infinite G-definably simple group de-
finable in an o-minimal structure M. Then there is a definable real closed field
R such that G is definably isomorphic to a semialgebraic linear group over R.

Remark. In the finite Morley rank context, any non-abelian definably simple
group is simple, by Zil’ber Indecomposability. In the o-minimal context, there
is only an infinitesimal version of Zil’ber Indecomposability, given in Section 2
of [Peterzil et al. 1997]. There are examples of non-abelian groups which are
definably simple but not simple. For example, if R is a non-archimedean real
closed field, then SO(3, R) is definably simple (in the sense of R) but not simple:
it has a normal subgroup consisting of matrices A+ I, where A has infinitesimal
entries.

Sketch of the proof of Theorem 3.2.5. The first step, given an o-minimal
expansion R of a real closed field, is to develop a general Lie theory. If X is
a definable C(1)-manifold, with a chart 〈U, φ, n〉, and m ∈ U , then the tangent
space at m is the set of definable C(1)-functions f : R → X with f(0) = m,
modulo an equivalence relation f1 ∼ f2, which holds if φ ◦ f1 and φ ◦ f2 have the
same differential at 0; it is in canonical bijection with Rn, so has a vector space
structure. Formally, Tm(X) is not a definable object, but the vector space Rn is,
and we often identify Tm(X) with Rn. Given a definable C(1)-mapping between
definable C(p)-manifolds f : X → Y , and m ∈ X, there is a (linear) differential
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dm(f) : Tm(X) → Tf(m)(Y ). The rank of dm(f) equals the dimension of f(X)
at f(m).

Suppose that G is a group definable in R, so G carries a definable manifold
structure. We consider the tangent space Te(G) at the identity e of G. Let
n := dim(G). Then dim(Te(G)) = n. For any g ∈ G, conjugation by g induces
an inner automorphism of G, whose differential on Te(G) is non-singular, so
(identifying Te(G) with Rn), induces an element of GL(n,R). The induced map
G→ GL(n,R) is a homomorphism. Thus, if G is centreless, we have a definable
embedding

f : G→ GL(n,R)

(the adjoint representation: see [Otero et al. 1996]), but we do not yet know that
its image is semialgebraic in the sense of R, that is, that the image is definable
in the pure field R.

There is a Lie algebra structure on the tangent space Te(G), given in a stan-
dard way. Since the Lie operation is bilinear, this gives an R-definable Lie algebra
structure L := L(G) on Rn, and Aut(L) is an algebraic subgroup of GL(n,R).
If G is assumed to be semisimple, that is, it has no infinite abelian normal sub-
group, then L is semisimple, that is, its only abelian ideal is {0}. In this case
an easy argument shows that dim(Aut(L)) = dim(L) (which equals n). Also the
adjoint representation gives a definable embedding f : G → Aut(L), so, as the
dimensions are equal, by Corollary 3.2.2 f(G) has finite index in Aut(L).

A useful fact (given in a more general context in Claim 1.3 of [Peterzil et al.
2000]) is that the connected component Aut(L)o of Aut(L) in the sense of the ex-
pansion R is the same as the semialgebraic connected component in the sense of
the pure field R, that is, Aut(L)o is semialgebraic. Hence, since f(G) is definable
in R, it is a union of finitely many cosets of Aut(L)o, so f(G) is semialgebraic.
This argument shows that if G is centreless and definable, with semisimple con-
nected component, then G is definably isomorphic to a linear semialgebraic group
over R.

In the proof of Theorem 3.2.5, one first uses the Trichotomy Theorem 3.1.5
(and the existence of the group G) to find a real closed field R on a definable
interval I of M. This can be used to define a chart on G at e with image
in In, such that the group multiplication and inversion are C(1) near e. This
enables us to use the adjoint representation to embed G definably into GL(n,R).
Thus, the image h(G) of this embedding in GL(n,R) is a definable group in an
o-minimal expansion of R. Since h(G) is definably simple, we can apply the
previous paragraph to it to obtain Theorem 3.2.5. For Theorem 3.2.4, it is also
necessary to develop an orthogonality theory between intervals, and a notion of
a unidimensional group. �

I now turn to the finer structure theory for definable groups, from [Peterzil et al.
1997]. So far, we have an o-minimal structure M, and a G-definably simple
group G, definable in M. We know about the abstract group structure of G, but
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not much about the model theory of G. In [Peterzil et al. 1997], the structure
G is identified up to bi-interpretability.

A structure M is interpretable in N if there is an isomorphic copy f(M)
definable in Neq. If M is interpretable in N by f , and N is interpretable in M

by g, then in Neq there is an isomorphic copy f(g(N)) of N, and in Meq there
is an isomorphic copy g(f(M)) of M. In general, the isomorphism f ◦ g will
not be definable in N. To illustrate this, consider a group G, with a definable
subgroup H, which itself has a definable subgroup G∗ isomorphic to G; then
the domain of G∗ is G-definable, but there is no reason why there should be a
G-definable isomorphism G→ G∗. We say that M and N are bi-interpretable if
the isomorphism f ◦ g is definable in N and g ◦ f is definable in M. We can now
state the main theorem of [Peterzil et al. 1997].

Theorem 3.2.6. Let G be a non-abelian infinite group which is G-definably
simple, and is definable in an o-minimal structure. Then there is a real closed
field R = (R,+ , ·) such that G is bi-interpretable either with R or with its degree
2 algebraically closed extension (R(i),+ , ·).

As a curious corollary, one can bypass Cherlin’s Conjecture for groups of finite
Morley rank to obtain a model-theoretic characterisation (among infinite simple
groups) of algebraic groups over algebraically closed fields of characteristic 0:
these are precisely the stable groups definable in some o-minimal structure.

The following further corollary is one of many results on the relationship
between abstract homomorphisms and algebraic (or analytic) homomorphisms
between algebraic groups. It was already known, by a combination of results in
[Borel and Tits 1973] and [Weisfeiler 1979].

Corollary 3.2.7 [Peterzil et al. 1997]. Let G1 be an unstable semialgebraic G1-
definably simple group over an real closed field R1, and G2 another semialgebraic
group over a real closed field R2. Then any abstract group isomorphism f : G1 →
G2 has the form f = g ◦h, where h is induced by an (abstract) field isomorphism
R1 → R2, and g is an R2-semialgebraic group isomorphism.

Remarks on the proof of Theorem 3.2.6.. The first step is to find an
infinite field interpretable in G. There is a real closed field R1 provided by
Theorem 3.2.5, such that G is definably isomorphic to a semialgebraic linear
group over R1. Let K1 := R1(i), let Ḡ be the Zariski closure of G in K1, and let
H be the minimal algebraic subgroup of Ḡ of finite index (so H is a connected
linear algebraic group defined over R1). We say that H is R1-isotropic if it
has an R1-defined algebraic subgroup T which is rationally R1-isomorphic to a
direct product of at least one copy of the multiplicative group of the field K1,
and R1-anisotropic otherwise.

The argument splits into two cases, according to whether H is R1-isotropic
or R1-anisotropic. If H is R1-anisotropic, then H(R1) is closed and bounded
in GL(n,R1), and this makes possible a model-theoretic transfer of results from
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[Nesin and Pillay 1991] on compact Lie groups, which give an interpretable real
closed field K.

In the other case, H is R1-isotropic. Now, arguments familiar from the finite
Morley rank case are applicable. Inside an ‘R1-parabolic subgroup of H’, using
the Levi decomposition one can define in H a connected soluble non-nilpotent
group. From this it is is possible to find an infinite definable abelian group
M acting faithfully and definably on a definable abelian group A, such that A
has no infinite definable M -invariant proper subgroups. Using a local version
of Zil’ber Indecomposability proved in [Peterzil et al. 1997], one can interpret
an infinite field K in G (which may be real closed or algebraically closed). The
field K is definable in the original field R1, so, by results of [Otero et al. 1996],
is semialgebraically (in the sense of R1) isomorphic to R1 or R1(i). A short
argument shows that every G-definable subset of Kn, for any n, is definable in
(K,+ , ·). Here, one may have first to replace R1(i) by R1 and apply [Marker
1990].

By the last two paragraphs, there is a real closed field R and an interpretable
field K which is equal to R or R(i). By a general model-theoretic argument,
to show that G and (K,+ , ·) are bi-interpretable it is now necessary to show
that G is K-internal, that is, there is a G-definable surjection Kr → G for some
r. By an application of the infinitesimal Zil’ber Indecomposability Theorem
and a Lie algebra argument, there is definable and K-internal U ⊆ G with
dim(U) = dim(G). By elimination of imaginaries in (K,+ , ·), U is in definable
bijection with a subset of Kr for some r. We may suppose that U contains an
open neighbourhood of the identity e of G. If K is real closed, we obtain a chart
with differential structure on U , and the adjoint representation gives a definable
embedding G→ GL(r,K), so G is K-internal. If K is algebraically closed, then
an argument with Morley rank and degree shows that G = U · U , so again G is
K-internal. �

4. Variants of o-minimality

There are several structures related to topological fields whose model theory
is similar to that of R, but which are not o-minimal. Examples include the
p-adic field Qp, any algebraically closed valued field, and any real closed field
with a definable convex valuation ring. In each case, the model theory is made
manageable by a quantifier elimination theorem. All these structures are geo-
metric in the sense of Section 2, and there is also a good dimension theory for
expansions of them by subanalytic sets. (In the real case, one expands by finitely
subanalytic sets: see [van den Dries 1986], [van den Dries and Miller 1996], or
[van den Dries 1996].) I describe here attempts to set their model theory in a
general context.

We consider here some model theoretic notions, akin to o-minimality, for
some classes of structures with a topology. These are weak o-minimality, C-
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minimality, and P -minimality. In each case, the general theory is not nearly as
well-developed as o-minimality, and the results obtained are still rather haphaz-
ard. Unfortunately, the definable connectedness properties of the topology are
not nearly as good as in the o-minimal case. This leads to a number of problems:
for example, we cannot expect analogues of the theorem that if a structure is
o-minimal then so is any structure elementarily equivalent to it.

4.1. Weak o-minimality

Definition 4.1.1 (Dickmann). A totally ordered structure M = (M,< , . . .) is
weakly o-minimal (weakly o-minimal) if every parameter-definable subset of M
is a finite union of convex sets. We say that a complete theory T is w.o.m if
every model of T is weakly o-minimal.

There is an example in [Macpherson et al. 1999] of a weakly o-minimal structure
whose theory is not weakly o-minimal. The following is the main motivating
example for weak o-minimality.

Example 4.1.2. Let R be a real closed field with a proper convex subring V

which is a valuation ring, and induced valuation map v to the value group. Let
Lrcvf denote the language (<,+ ,− , · , 0, 1, D) of ordered rings with an additional
binary relation symbol D. We interpret D by putting Dxy whenever v(x) ≤
v(y). Then, by results from [Cherlin and Dickmann 1983], the theory of all such
structures in the language Lrcvf is complete and has quantifier elimination, and
(by [Dickmann 1985]), is weakly o-minimal.

As a concrete example of such a structure, let R be any non-archimedean real
closed field, and V the set of its finite elements, that is, elements bounded in
absolute value by a natural number. The unique maximal ideal of V consists of
the infinitesimals.

In Example 4.1.2, a weakly o-minimal structure is obtained from an o-minimal
one essentially by adding a unary predicate interpreted by a convex set, namely,
the valuation ring. In [Macpherson et al. 1999], another example is given of this
phenomenon. Let R be the field of real algebraic numbers, and let R be the
structure (R,< ,+ ,− , · , 0, 1, P ), where P is a unary predicate interpreted by
the convex set (−π, π) ∩R. Then R has weakly o-minimal theory (in fact, here,
π could be any real transcendental).

Cherlin asked whether this phenomenon holds generally, that is, whether any
expansion of any o-minimal structure by a predicate for a convex set is weakly
o-minimal. The following positive answer is given in [Baizhanov 1999] and in
[Baisalov and Poizat 1998] (in which the proof uses Theorem 2.4.5).

Theorem 4.1.3. Let M be an o-minimal structure, let {Ci : i ∈ I} be a family
of convex subsets of M , and let M∗ be the expansion of M obtained by adding
unary predicates interpreted by the Ci. Then Th(M∗) is weakly o-minimal .
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By this theorem, if R is an o-minimal expansion of R and R′ is a non-archimedean
elementary extension, then the structure (R′, V ) has weakly o-minimal theory,
where V denotes the convex valuation ring of finite elements of R′. Structures of
this sort have been investigated further in [van den Dries and Lewenberg 1995;
van den Dries 1997]. For example, the latter paper shows that if R is an o-
minimal expansion of a real closed field and V is a proper non-empty convex
subring closed under 0-definable continuous functions, then (R, V ) is weakly o-
minimal (as follows also from Theorem 4.1.3), with weakly o-minimal value group
and residue field (as is fairly clear). Furthermore the theory Tconvex of such ex-
pansions of models of T is complete, and has a relative quantifier-elimination
(relative to quantifier-elimination for T , and assuming T is universally axioma-
tised). In addition, the structure induced on the value group is o-minimal pre-
cisely if T is power-bounded (a generalisation of ‘polynomially bounded’ for arbi-
trary o-minimal expansions of real closed fields), precisely if R has no definable
order-preserving isomorphism from (R,+ ) to the multiplicative group R>0.

The structure theory for o-minimal structures begins with the Monotonicity
Theorem. In the weakly o-minimal case, we can only hope for a local version of
this. For example, let M = (M,< , f), where (M,<) is naturally identified with
Z × Q, ordered lexicographically, and, for all (z, q) ∈ M , f((z, q)) = (−z, q).
Then Th(M) is weakly o-minimal, and the function f is locally strictly mono-
tonic, but not piecewise monotonic in the sense of Theorem 2.0.2.

In order to obtain a reasonable cell decomposition theorem, we need to con-
sider not merely definable functions M → M , but definable functions M → M̄ ,
where M̄ denotes the Dedekind completion of M . There is a natural notion of
definable sort in M̄ . Let Y ⊂ Mn+1 be 0-definable, let π : Mn+1 → Mn be the
projection dropping the last coordinate, let Z := π(Y ), and for each ā ∈ Z let
Yā := {y : (ā, y) ∈ Y }. Suppose that each set Yā is bounded above but does not
have a supremum in M . Define an equivalence relation ∼ on Z, putting ā ∼ b̄

if Yā, Yb̄, have a common final segment. Then Z/ ∼ (which is a sort in Meq) is
naturally identified with a subset of M̄ .

If I,K are sets each endowed with a dense total order, then we say that a
function f : I → K is tidy if each element of I lies in the interior of an open
interval on which f is strictly monotonic or constant, with the same possibility
(i.e., increasing, decreasing, or constant) holding for each x ∈ I. The following
result was proved under extra hypotheses in [Macpherson et al. 1999], and in
general by Arefiev [1997].

Theorem 4.1.4. Let M be weakly o-minimal , and f : M → M̄ a definable
partial function (to a definable sort). Then there is a partition dom(f) = X ∪
I1∪· · ·∪ Im, where X is finite, and for each j the set Ij is definable and convex ,
and f |Ij is tidy .

Recall from Section 2 the definition of the topological dimension tdim(X) of a
definable set X. We say that topological dimension is well-behaved in a class K
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of structures, if for all M ∈ K, m,n > 0, and definable X1, . . . , Xm ∈ Mn,
tdim(X1 ∪ . . . ∪ Xm) = max(tdim(X1), . . . , tdim(Xm)). By Corollary 2.2.8
and Theorem 2.2.9, topological dimension is well-behaved in the class of o-
minimal structures. By results from [Macpherson et al. 1999] together with
Theorem 4.1.4, we can extend this to obtain

Theorem 4.1.5. Topological dimension is well-behaved in the class of weakly
o-minimal structures.

From this (and related results in Section 4 of [Macpherson et al. 1999]) there
follows a rather weak cell decomposition theorem for weakly o-minimal theories.
It is weak in the sense that the boundary functions defining the cells may be
functions to definable sorts in M̄ , which are not assumed to be continuous. If
the theory of M is weakly o-minimal, then we can arrange in addition that each
cell has a homeomorphic projection to an open set. Furthermore, in this case,
definable bijections preserve topological dimension. There are weakly o-minimal
theories in which algebraic closure does not have the exchange property (for
example, the contraction groups of F.-V. Kuhlmann [1995]). However, models
of any weakly o-minimal theory are uniformly bounded, so if algebraic closure
does have the exchange property in such a theory, then its models are geometric
structures in the sense of Section 2. If algebraic closure has the exchange property
in a weakly o-minimal theory, then by Theorem 4.12 of [Macpherson et al. 1999],
geometric dimension for definable sets is equal to topological dimension as in the
o-minimal case (see Theorem 2.2.9).

In the o-minimal case, it is easy to show that any o-minimal ordered group
is divisible abelian, and any o-minimal ordered field is real closed (see Proposi-
tions 3.1.1 and 3.1.2). The same theorems hold in the weakly o-minimal case:

Theorem 4.1.6. (i) Any weakly o-minimal ordered group is divisible abelian.
(ii) Any weakly o-minimal ordered field is real closed .

These results are proved in [Macpherson et al. 1999]. In the group case it is easy,
but the argument in the field case is substantial, and uses the fact that topo-
logical dimension is well-behaved, a kind of inverse function theorem, and some
valuation theory. Observe that it is only assumed that the structure is weakly
o-minimal, not the theory. A slight extension of Theorem 4.1.6, Corollary 5.13 of
[Macpherson et al. 1999], states that any weakly o-minimal ordered commutative
ring with a unit is a real closed ring, that is, a convex valuation ring of a real
closed field (or possibly the whole field).

For a weakly o-minimal expansion M of an ordered field, quite a nice di-
chotomy emerges from results in Section 6 of [Macpherson et al. 1999]. Either
there is a definable convex valuation ring in M, or M shares many properties of
o-minimality: the Monotonicity Theorem is piecewise, and not just local; there
is a cell decomposition theorem in which the boundary functions of the cells are
continuous (to a sort in M̄); algebraic closure has the exchange property; and the



NOTES ON O-MINIMALITY AND VARIATIONS 121

theory of M is weakly o-minimal (and in particular, M is uniformly bounded).
The case when there is a definable convex valuation ring also has a combina-
torial characterisation: it occurs precisely when there is a definable equivalence
relation on M with infinitely many infinite classes.

In another direction, there is a structure theory (with several interesting ex-
amples) for ω-categorical weakly o-minimal structures [Herwig et al. 2000]. In
particular, it is shown that if such a structure is 3-indiscernible (that is, there is
a unique type of strictly increasing triple) then it is indiscernible. For a typical
example of the structures which arise, consider a countable non-archimedean real
closed field R with the archimedean valuation v corresponding to the valuation
ring of finite elements, and define a ternary relation C on R, putting C(x; y, z)
whenever

v(y − x) < v(y − z).

Then (R,< ,C) is ω-categorical and weakly o-minimal (and C is a C-relation
in the sense of the next subsection). In contrast, there are no interesting ω-
categorical o-minimal structures [Pillay and Steinhorn 1986].

Finally, I comment that, if M is a weakly o-minimal theory which is a geomet-
ric structure, then by Chapter 8 of [Mosley 1996], the analogue of Lemma 3.2.3
holds (that is, any definable group is definably topologisable). Analogues of this
also hold for C- and P -minimal structures discussed below (but the statement
in the P -minimal case is weaker).

The theory of weak o-minimality has been developed further by several au-
thors (Aref’ev, Baizhanov, Baisalov, Kulpeshov, Nurtazyn, Verbovsky) in Al-
maty.

4.2. C and P -minimality. We now consider a different generalisation of o-
minimality, from [Macpherson and Steinhorn 1996], and again obtain general
settings for a model theory of certain valued fields.

Suppose L ⊂ L+ are languages, and K is an elementary class of L-structures.
We say that an L+-structure M is K-minimal if the reduct M|L ∈ K and every
L+-definable subset of M is definable by a quantifier-free L-formula. A complete
L+-theory is K-minimal if all its models are. It is easily checked that if M is
K-minimal then its theory is K-minimal if and only if the following condition
holds: for any m > 0 and L+-definable subset S of Mm+1, there is m′ > 0 and a
quantifier-free L-definable subset S′ ⊆Mm′+1 such that for each ā ∈Mm there
is ā′ ∈Mm′ such that Sā = S′ā′ (here, as usual, Sx̄ := {y : (x̄, y) ∈ S}).

This setting includes o-minimality as a special case (where L has just a single
binary relation, and K is the class of all dense total orders). If L has no relation,
function, or constant symbols (apart, of course, from =), and K is the class of
all infinite L-structures, then a theory is K-minimal if and only if it is strongly
minimal. However, weak o-minimality does not quite fit into this setting. Like
o-minimality, K-minimality is closed under reducts to languages containing L,
and under expansions by constants. It is a condition on definable sets in one
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variable, which makes it easy to verify if, for example, one has quantifier elim-
ination. Like o-minimality, it often gives strong information for definable sets
in several variables, such as a dimension theory. It is observed in Theorem 3.2
of [Macpherson and Steinhorn 1996] that if a theory in L+ is K-minimal, then
various stability properties lift from the L-reducts.

Our task is to find classes K such that there is a reasonable model theory of
K-minimality and there are interesting K-minimal structures. This was initiated
in [Macpherson and Steinhorn 1996], and developed in [Haskell and Macpherson
1994; 1997; van den Dries et al. 1999; Lipshitz and Robinson 1998].

C-minimality. The symbol C here denotes a ternary relation C(x; y, z) (the semi-
colon indicates that the first variable is distinguished). We let L = {C}, and let
KC be the class of L-structures which satisfy the following axioms, where the free
variables are universally quantified. The axioms were isolated by Adeleke and
Neumann in work on Jordan permutation groups, and much more information
on them can be found in [Adeleke and Neumann 1998].

(C1) C(x; y, z)→ C(x; z, y)
(C2) C(x; y, z)→ ¬C(y;x, z)
(C3) C(x; y, z)→ (C(w; y, z) ∨ C(x;w, z))
(C4) x 6= y → (∃z 6= y)C(x; y, z)
(C5) ∃x∃y (x 6= y).

As an example, let (T,≤) be a semilinearly ordered set, that is, a partial order
such that any two elements have a common lower bound, but the set of all
lower bounds of an element is totally ordered. Suppose that T is infinite there
is branching arbitrarily far up every maximal chain of T . Let M be the set of
maximal chains of (T,≤), and interpret C(x; y, z) to hold if either y = z 6= x, or
x, y, z are distinct and x branches below where y and z branch (that is, y ∩ x ⊂
y ∩ z, where we regard elements of M as subsets of T ). Then (M,C) satisfies
(C1)–(C5). A converse to this was shown in [Adeleke and Neumann 1998]:
namely, if (M,C) ∈ KC , then there is a semilinear order (T,≤) interpretable in
(M,C), living on a quotient of M2, such that M consists of a set of maximal
chains of (T,≤) with union T , and C is interpreted as above. Since we think of
KC-structures in this way as sets of chains in a semilinear order, we often talk of
nodes of (M,C), meaning internal nodes of the underlying semilinear order. If
(M,C) ∈ KC then there is a Hausdorff topology on M with a uniformly definable
basis: each internal node a determines the basic open set consisting of maximal
chains which pass through it. This gives an analogy between KC and the class
of infinite dense total orders, but observe that unlike in the totally ordered case,
the above basis consists of clopen sets and so in particular the topology is totally
disconnected.

With this class KC , we now say that a structure M = (M,C, . . .) is C-minimal
if its theory is KC-minimal (unlike 0-minimality, we choose by definition to close
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the condition under elementary equivalence). This notion was introduced in
[Macpherson and Steinhorn 1996], where a number of examples were given, and
a reasonable structure theory found for C-minimal groups. (A C-minimal group
is the C-analogue of an o-minimal ordered group; it is a C-minimal structure
M = (M,C, ∗), where (M, ∗) is a group, (M,C) ∈ KC , and the C-relation is
preserved by left and right multiplication.) For example, such a group must
have a definable abelian normal subgroup with quotient of finite exponent.

There are nice connections between C-minimality and strong minimality and
o-minimality. If M is C-minimal with underlying semilinear order (T,≤), then
any element of M corresponds to a subset of S ⊂ T , that is, the set of nodes on
the chain. Such a set S is interpretable in M and S together with the induced
structure on it is o-minimal. Likewise, if a ∈ T , there is an equivalence relation
Ea on the set {x ∈ M : a ∈ x}: put Eaxy if x ∩ y contains a node strictly
greater than a. The Ea-classes are called cones at a, and the set of cones at a is
interpretable in M, and, if infinite, is strongly minimal.

More general results were obtained in [Haskell and Macpherson 1994]. We
have a notion of topological dimension as in Section 2, and, as in Theorem 4.1.5,
obtain:

Theorem 4.2.1. Topological dimension is well-behaved in any C-minimal struc-
ture.

The proof of this is by induction, where simultaneously a cell decomposition
theorem is proved (as in Theorem 2.1.3). However, the notion of ‘cell’ is very
cumbersome. With this notion of ‘cell’ one also proves in the induction the
following result.

Theorem 4.2.2. Let n be a positive integer , X a definable subset of Mn, and
f : Mn → M a definable partial function. Then X can be expressed as the
disjoint union of finitely many cells on each of which f is continuous.

The proof also uses a local version of the o-minimal Monotonicity Theorem,
where ‘monotonic function’ is replaced by ‘isomorphism’ (of neighbourhoods,
endowed with the relation C).

It is shown in [Macpherson and Steinhorn 1996] that in a C-minimal structure
M, algebraic closure need not have the exchange property. However, by Propo-
sition 6.1 of [Haskell and Macpherson 1994], the exchange property can only fail
in one way, namely if there is a certain kind of definable ‘bad’ function, between
M and the set of internal nodes. Furthermore, any C-minimal structure M is
uniformly bounded, as otherwise, in an elementary extension, there would be an
infinite definable set with empty interior, contrary to C-minimality. Hence, if
algebraic closure in M does have the exchange property, then M is a geometric
structure in the sense of Section 2, so algebraic closure in this case also pro-
vides a notion of dimension for definable sets. By Proposition 6.3 of [Haskell
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and Macpherson 1994], in this situation the topological and geometric notions
of dimension coincide.

There is a natural class of C-minimal structures. Let

F := (F, V,+ , ·)

be a non-trivially valued field, where V is a valuation ring with corresponding
valuation map v to the value group. Define C on F by putting C(x; y, z) if and
only if v(y−x) < v(y− z). Then the relation C is invariant under addition, and
under multiplication by non-zero elements, and (F,C) ∈ KC . In fact, as noted
in [Macpherson and Steinhorn 1996], the converse holds: if F = (F,+ , ·) is a
field, (F,C) ∈ KC , and C is preserved by the field operations in the above sense,
then C comes from a valuation as above, and the valuation is definable in (F,C).
In this situation, the C-relation and the semilinear order provide a natural way
of viewing the value group and residue field. For let (T,≤) be the semilinear
order underlying (F,C) (so members of F are maximal chains in T ). Now the
value group Γ of F is identified with the set of nodes on the chain 0F (the zero
of F ), with the natural induced order. If x ∈ F , then v(x) = max(x ∩ 0F ), that
is, the node at which the chains x and 0F meet (there will be such a node). In
particular, the zero 0Γ of the value group is the node at which the chains 1F
and 0F meet, the valuation ring V is the set of chains in F which pass through
this node, and the maximal ideal consists of those chains lying in the cone at
0Γ which contains 0F . The residue field consists of the set of cones at 0Γ. The
picture is fairly clear in say the valued power series field Fp[[t]], where we may
think of the internal nodes as given by polynomials in t, t−1.

By a quantifier-elimination result of A. Robinson, if F is an algebraically
closed valued field, then (F, C) is C-minimal [Macpherson and Steinhorn 1996].
In [Haskell and Macpherson 1994], the converse was proved, namely:

Theorem 4.2.3. Every C-minimal field F is an algebraically closed non-trivially
valued field .

In the proof it follows from the above identification of the value group Γ and
residue field F̄ that Γ is an o-minimal ordered group, so is divisible abelian,
and F̄ is finite or strongly minimal. By the divisibility of the value group, F
is closed under Kummer and Artin–Schreier extensions, and this forces F̄ to be
infinite, so algebraically closed. The proof then uses valuation theory, together
with Theorem 4.2.1.

Given the rich supply of o-minimal expansions of the field of reals, it is natural
to ask for C-minimal expansions of algebraically closed valued fields. The model
theory of rigid analytic geometry was first developed by Lipshitz [1993], who
proved quantifier elimination for an expansion of an algebraically closed valued
field (complete with respect to a definable non-archimedean norm), by a rich and
rather complicated non-archimedean structure. Lipshitz and Robinson [1998]
have shown that this expansion is C-minimal. This means that subanalytic sets
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in one variable are uniformly (in the parameters) definable in the pure valued
field.

P -minimality. In this subsection I use ‘semialgebraic’ to mean ‘definable in the
pure field Qp.’ (It is well-known that the natural valuation on Qp is definable
in the pure field.) As discussed in the survey [Macintyre 1986], there are many
model-theoretic analogues between Qp and R, at both the semialgebraic and
the subanalytic level (see [Denef and van den Dries 1988] for the latter). It is
therefore natural to look for versions of o-minimality which support Qp, and one
such, P -minimality, was proposed in [Haskell and Macpherson 1997].

Definition 4.2.4. Let L be the language (+,− , · , 0, 1, Pn)n>1 (where the Pn
are unary predicates). Regard Qp as an L-structure, letting Pn pick out the nth

powers in Qp. Let KP be the class of L-structures elementarily equivalent to
Qp. Then if L+ ⊇ L, an L+-structure is P -minimal if all models of its theory
are KP -minimal.

By [Macintyre 1976], Qp has quantifier elimination in the above language L. The
version of P -minimality described above differs slightly from that in [Haskell and
Macpherson 1997], where, for example, p-adically closed fields in the more general
sense of [Prestel and Roquette 1984] are considered P -minimal. I emphasise that
unlike the other model-theoretic classes considered in this paper, a P -minimal
structure is always an expansion of a field.

The model theory of P -minimality has not been developed far, but I sketch
some results. In any P -minimal structure F with value group Γ, the valuation
topology has a uniformly definable basis of clopen sets, namely, sets of the form
Bγ(a) = {x : v(x− a) ≥ γ} where a ∈ F and γ ∈ Γ. We again obtain that topo-
logical dimension is well-behaved in P -minimal structures. As in the C-minimal
case, P -minimal structures are uniformly bounded. Furthermore, unlike in the
weakly o-minimal and C-minimal cases, algebraic closure has the exchange prop-
erty in any P -minimal structure, so such structures are geometric. The resulting
geometric notion of dimension coincides with topological dimension. There are
also theorems about continuity of definable functions. No cell decomposition
theorem for P -minimal structures has been proved (though it might not be diffi-
cult, and a cell decomposition and related results for Qp are developed in [Denef
1986; Scowcroft and van den Dries 1988]).

Let LDan be the language introduced in [Denef and van den Dries 1988] to
describe the subanalytic structure on the p-adic integers Zp. The following is an
analogue of the theorem of Lipshitz and Robinson mentioned above, and is the
main theorem of [van den Dries et al. 1999].

Theorem 4.2.5. The LDan-structure Qp is P -minimal .

It was shown earlier in [Denef and van den Dries 1988] (Corollary 3.32) that
any LDan-definable subset of Qp is semialgebraic. Theorem 4.2.5 shows that such
sets are semialgebraic uniformly in the defining parameters. The point is that
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P -minimality is a property of the theory ; however, the uniformity provides new
information also in the standard model Qp.

The proof of Theorem 4.2.5 uses the quantifier elimination of [Denef and
van den Dries 1988]. One has a quantifier-free LDan-formula φ(x, ȳ), and has to
show that the set defined by φ(x, ā) is semialgebraic, uniformly in ā. The for-
mula φ(x, ȳ) is assumed to be atomic, and the proof is based on induction on
the complexity of a term t(x) in the language. The main problems are posed by
occurrences in a term of the binary function symbol D for division. One works
in an elementary extension K, and, using a parametric Weierstrass Preparation
Theorem, obtains a Preparation Theorem for a certain ring K{Y1, . . . , Yn} of
definable functions on Kn. The idea is, given a term t(x), to cover the valuation
ring R of K with particularly nice sets known as ‘connected affinoids’. Each con-
nected affinoid F has a well-behaved associated ring O(F ) of definable functions
on it. The ring O(F ) is a quotient of K{Y1, . . . , Yn}, where n−1 is the number of
‘holes’ in F . It has nice divisibility properties — any non-zero element of O(F )
has just finitely many zeros, and if it has no zeros then it is a unit of O(F ).
One uses this to show, by induction on the complexity, that any term is given
piecewise by members of O(F ) for various F . Theorem 4.2.5 follows immediately
from this.

I conclude with an amalgam of results from [Macpherson et al. 1999] (Propo-
sition 7.3), [Macpherson and Steinhorn 1996] (Proposition 3.4) and [Haskell and
Macpherson 1997] (Proposition 7.1), which is suggested by Corollary 3.10 of [Pil-
lay and Steinhorn 1986]. Recall that a theory T has the independence property
[Shelah 1978] if there is M |= T and a formula φ(x̄, ȳ) with l(x̄) = m, l(ȳ) = n,
and āi ∈ Mm (for all i ∈ ω) such that: for any S ⊆ ω, there is b̄S ∈ Mn such
that for all i ∈ ω, M |= φ(āi, b̄S) if and only if i ∈ S. No stable theory can have
the independence property, but for example, pseudofinite fields do have it.

Theorem 4.2.6. No weakly o-minimal , C-minimal or P -minimal theory can
have the independence property .
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(Gross Köris, 1985), Fachbereich Mathematik, Humboldt Univ. Berlin, 1985.

[van den Dries 1986] L. van den Dries, “A generalization of the Tarski–Seidenberg
theorem, and some nondefinability results”, Bull. Amer. Math. Soc. (N.S.) 15:2
(1986), 189–193.

[van den Dries 1989] L. van den Dries, “Dimension of definable sets, algebraic
boundedness and Henselian fields”, Ann. Pure Appl. Logic 45:2 (1989), 189–209.

[van den Dries 1996] L. van den Dries, “O-minimal structures”, pp. 137–185 in Logic:
from foundations to applications (Staffordshire, 1993), edited by W. Hodges et al.,
Oxford Univ. Press, New York, 1996.

[van den Dries 1997] L. van den Dries, “T -convexity and tame extensions, II”, J.
Symbolic Logic 62:1 (1997), 14–34. Correction in 63:4 (1998), 1597.

[van den Dries 1998] L. van den Dries, Tame topology and o-minimal structures, London
Math. Soc. Lecture Note Series 248, Cambridge Univ. Press, Cambridge, 1998.

[van den Dries and Lewenberg 1995] L. van den Dries and A. H. Lewenberg, “T -
convexity and tame extensions”, J. Symbolic Logic 60:1 (1995), 74–102.

[van den Dries and Miller 1996] L. van den Dries and C. Miller, “Geometric categories
and o-minimal structures”, Duke Math. J. 84:2 (1996), 497–540.

[van den Dries et al. 1999] L. van den Dries, D. Haskell, and D. Macpherson, “One-
dimensional p-adic subanalytic sets”, J. London Math. Soc. (2) 59:1 (1999), 1–20.

[Haskell and Macpherson 1994] D. Haskell and D. Macpherson, “Cell decompositions
of C-minimal structures”, Ann. Pure Appl. Logic 66:2 (1994), 113–162.

[Haskell and Macpherson 1997] D. Haskell and D. Macpherson, “A version of o-
minimality for the p-adics”, J. Symbolic Logic 62:4 (1997), 1075–1092.

[Herwig et al. 2000] B. Herwig, H. D. Macpherson, G. Martin, A. Nurtazyn, and J. K.
Truss, “Omega-categorical weakly o-minimal structures”, Ann. Pure Appl. Logic
101 (2000), 65–93.

[Hrushovski 1992] E. Hrushovski, “Strongly minimal expansions of algebraically closed
fields”, Israel J. Math. 79:2-3 (1992), 129–151.

[Hrushovski and Pillay 1994] E. Hrushovski and A. Pillay, “Groups definable in local
fields and pseudo-finite fields”, Israel J. Math. 85:1-3 (1994), 203–262.

[Hrushovski and Zilber 1996] E. Hrushovski and B. Zilber, “Zariski geometries”, J.
Amer. Math. Soc. 9:1 (1996), 1–56.



128 DUGALD MACPHERSON

[Kim and Pillay 1997] B. Kim and A. Pillay, “Simple theories”, Ann. Pure Appl. Logic
88:2-3 (1997), 149–164.

[Knight et al. 1986] J. F. Knight, A. Pillay, and C. Steinhorn, “Definable sets in ordered
structures, II”, Trans. Amer. Math. Soc. 295:2 (1986), 593–605.

[Kuhlmann 1995] F. Kuhlmann, “Abelian groups with contractions, II: Weak o-
minimality”, pp. 323–342 in Abelian groups and modules (Padova, 1994), edited by A.
Facchini and C. Menini, Mathematics and its applications 343, Kluwer, Dordrecht,
1995.

[Lipshitz 1993] L. Lipshitz, “Rigid subanalytic sets”, Amer. J. Math. 115:1 (1993),
77–108.

[Lipshitz and Robinson 1998] L. Lipshitz and Z. Robinson, “One-dimensional fibers of
rigid subanalytic sets”, J. Symbolic Logic 63:1 (1998), 83–88.

[Loveys and Peterzil 1993] J. Loveys and Y. Peterzil, “Linear o-minimal structures”,
Israel J. Math. 81:1-2 (1993), 1–30.

[Macintyre 1976] A. Macintyre, “On definable subsets of p-adic fields”, J. Symbolic
Logic 41:3 (1976), 605–610.

[Macintyre 1986] A. Macintyre, “Twenty years of p-adic model theory”, pp. 121–153
in Logic colloquium ’84 (Manchester, 1984), edited by J. B. Paris et al., Stud. Logic
Found. Math. 120, North-Holland, Amsterdam, 1986.

[Macpherson and Steinhorn 1996] H. D. Macpherson and C. Steinhorn, “On variants
of o-minimality”, Ann. Pure Appl. Logic 79:2 (1996), 165–209.

[Macpherson et al. 1999] H. D. Macpherson, D. Marker, and C. Steinhorn, “Weakly
o-minimal structures and real closed fields”, preprint, 1999. Available at http://
amsta.leeds.ac.uk/pure/staff/macpherson/preprints.html. To appear in Transac-
tions Amer. Math. Soc.

[Marker 1990] D. Marker, “Semialgebraic expansions of C”, Trans. Amer. Math. Soc.
320:2 (1990), 581–592.

[Marker and Steinhorn 1994] D. Marker and C. I. Steinhorn, “Definable types in o-
minimal theories”, J. Symbolic Logic 59:1 (1994), 185–198.

[Mekler et al. 1992] A. Mekler, M. Rubin, and C. Steinhorn, “Dedekind completeness
and the algebraic complexity of o-minimal structures”, Canad. J. Math. 44:4 (1992),
843–855.

[Miller and Starchenko 1998] C. Miller and S. Starchenko, “A growth dichotomy for
o-minimal expansions of ordered groups”, Trans. Amer. Math. Soc. 350:9 (1998),
3505–3521.

[Mosley 1996] A. Mosley, Groups definable in topological structures, Ph.D. thesis, Queen
Mary and Westfield College, London, 1996.

[Nesin and Pillay 1991] A. Nesin and A. Pillay, “Some model theory of compact Lie
groups”, Trans. Amer. Math. Soc. 326:1 (1991), 453–463.

[Otero et al. 1996] M. Otero, Y. Peterzil, and A. Pillay, “On groups and rings definable
in o-minimal expansions of real closed fields”, Bull. London Math. Soc. 28:1 (1996),
7–14.

[Peterzil 1994] Y. Peterzil, “Constructing a group-interval in o-minimal structures”,
J. Pure Appl. Algebra 94:1 (1994), 85–100.



NOTES ON O-MINIMALITY AND VARIATIONS 129

[Peterzil and Starchenko 1998] Y. Peterzil and S. Starchenko, “A trichotomy theorem
for o-minimal structures”, Proc. London Math. Soc. (3) 77:3 (1998), 481–523.

[Peterzil and Steinhorn 1999] Y. Peterzil and C. Steinhorn, “Definable compactness and
definable subgroups of o-minimal groups”, J. London Math. Soc. (2) 59:3 (1999),
769–786.

[Peterzil et al. 1997] Y. Peterzil, A. Pillay, and S. Starchenko, “Simple algebraic and
semialgebraic groups over real closed fields”, Preprint, 1997. Available at http://
www.math.uiuc.edu/Reports/pillay/97-028.html. To appear in Trans. Amer. Math.
Soc.

[Peterzil et al. 1998] Y. Peterzil, A. Pillay, and S. Starchenko, “Simple groups definable
in o-minimal structures”, pp. 211–218 in Logic Colloquium ’96 (San Sebastián, 1996),
Lecture Notes in Logic 12, Springer, Berlin, 1998.

[Peterzil et al. 2000] Y. Peterzil, A. Pillay, and S. Starchenko, “Definably simple groups
in o-minimal structures”, Trans. Amer. Math. Soc. (2000).

[Pillay 1986] A. Pillay, “Some remarks on definable equivalence relations in o-minimal
structures”, J. Symbolic Logic 51:3 (1986), 709–714.

[Pillay 1988] A. Pillay, “On groups and fields definable in o-minimal structures”, J.
Pure Appl. Algebra 53:3 (1988), 239–255.

[Pillay 1994] A. Pillay, “Definability of types, and pairs of o-minimal structures”, J.
Symbolic Logic 59:4 (1994), 1400–1409.

[Pillay and Steinhorn 1986] A. Pillay and C. Steinhorn, “Definable sets in ordered
structures, I”, Trans. Amer. Math. Soc. 295:2 (1986), 565–592.

[Pillay and Steinhorn 1987] A. Pillay and C. Steinhorn, “Discrete o-minimal struc-
tures”, Ann. Pure Appl. Logic 34:3 (1987), 275–289.

[Pillay and Steinhorn 1988] A. Pillay and C. Steinhorn, “Definable sets in ordered
structures, III”, Trans. Amer. Math. Soc. 309:2 (1988), 469–476.

[Prestel and Roquette 1984] A. Prestel and P. Roquette, Formally p-adic fields, Lecture
Notes in Math. 1050, Springer, Berlin, 1984.

[Scowcroft and van den Dries 1988] P. Scowcroft and L. van den Dries, “On the
structure of semialgebraic sets over p-adic fields”, J. Symbolic Logic 53:4 (1988),
1138–1164.

[Shelah 1978] S. Shelah, Classification theory and the number of non-isomorphic
models, Stud. Logic Found. Math. 92, North-Holland, Amsterdam, 1978.

[Strzebonski 1994] A. W. Strzebonski, “Euler characteristic in semialgebraic and other
o-minimal groups”, J. Pure Appl. Algebra 96:2 (1994), 173–201.

[Weisfeiler 1979] B. Weisfeiler, “On abstract homomorphisms of anisotropic algebraic
groups over real-closed fields”, J. Algebra 60:2 (1979), 485–519.

[Wilkie 1996] A. Wilkie, “Model completeness results for expansions of the real field
by restricted Pfaffian functions and the exponential function”, J. Amer. Math. Soc.
9:2 (1996), 1051–1094.



130 DUGALD MACPHERSON

Dugald Macpherson

Department of Pure Mathematics

University of Leeds

Leeds LS2 9JT

England

pmthdm@amsta.leeds.ac.uk


