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Model Theory of Differential Fields

DAVID MARKER

Abstract. This article surveys the model theory of differentially closed
fields, an interesting setting where one can use model-theoretic methods
to obtain algebraic information. The article concludes with one example
showing how this information can be used in diophantine applications.

A differential field is a field K equipped with a derivation δ : K → K;
recall that this means that, for x, y ∈ K, we have δ(x + y) = δ(x) + δ(y) and
δ(xy) = x δ(y) + yδ(x). Roughly speaking, such a field is called differentially
closed when it contains enough solutions of ordinary differential equations. This
setting allows one to use model-theoretic methods, and particularly dimension-
theoretic ideas, to obtain interesting algebraic information.

In this lecture I give a survey of the model theory of differentially closed
fields, concluding with an example — Hrushovski’s proof of the Mordell–Lang
conjecture in characteristic zero — showing how model-theoretic methods in this
area can be used in diophantine applications. I will not give the proofs of the
main theorems. Most of the material in Sections 1–3 can be found in [Marker
et al. 1996], while the material in Section 4 can be found in [Hrushovski and
Sokolovic ≥ 2001; Pillay 1996]. The primary reference on differential algebra is
[Kolchin 1973], though the very readable [Kaplansky 1957] contains most of the
basics needed here, as does the more recent [Magid 1994]. The book [Buium
1994] also contains an introduction to differential algebra and its connections to
diophantine geometry. We refer the reader to these sources for references to the
original literature.

1. Differentially Closed Fields

Throughout this article all fields will have characteristic zero. A differential
field is a field K equipped with a derivation δ : K → K. The field of constants
is C = {x ∈ K : δ(x) = 0}.

We will study differential fields using the language L = {+,− , · , δ, 0, 1}, the
language of rings augmented by a unary function symbol δ. The theory of
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differential fields, DF, is given by the axioms for fields of characteristic zero and
the axioms

∀x ∀y δ(x+ y) = δ(x) + δ(y),

∀x ∀y δ(xy) = xδ(y) + yδ(x),

which assert that δ is a derivation.
If K is a differential field, we define K{X1, . . . , Xn}, the ring of differen-

tial polynomials over K, to be the following polynomial ring in infinitely many
variables:

K
[
X1, . . . , Xn, δ(X1), . . . , δ(Xn), . . . , δm(X1), . . . , δm(Xn), . . .

]
.

We extend δ to a derivation on K{X1, . . . , Xn} by setting δ(δn(Xi)) = δn+1(Xi).
We say that K is an existentially closed differential field if, whenever f1, . . . ,

fm ∈ K{X1, . . . , Xn} and there is a differential field L extending K containing
a solution to the system of differential equations f1 = · · · = fm = 0, there is
already a solution in K. Robinson gave an axiomatization of the existentially
closed differential fields. Blum gave a simple axiomatization that refers only to
differential polynomials in one variable.

If f ∈ K{X1, . . . , Xn} \K, the order of f is the largest m such that δm(Xi)
occurs in f for some i. If f is a constant, we say f has order −1.

Definition. A differential field K is differentially closed if, whenever f, g ∈
K{X}, g is nonzero and the order of f is greater than the order of g, there is
a ∈ K such that f(a) = 0 and g(a) 6= 0.

In particular, any differentially closed field is algebraically closed.
For each m and d0 and d1 we can write down an L-sentence φm,d0,d1 that

asserts that if f is a differential polynomial of order m and degree at most d0

and g is a nonzero differential polynomial of order less than m and degree at
most d1, then there is a solution to f(X) = 0 and g(X) 6= 0. For example, φ2,1,1

is the formula

∀a0 ∀a1 ∀a2 ∀a3 ∀b0 ∀b1 ∀b2(
a3 6= 0 ∧ (b0 6= 0 ∨ b1 6= 0 ∨ b2 6= 0)

−→ ∃x (a3 δ(δ(x)) + a2 δ(x) + a1x+ a0 = 0 ∧ b2 δ(x) + b1x+ b0 6= 0)
)
.

The L-theory DCF is axiomatized by DF and the set of axioms φm,d0,d1 , for
all m, d0 and d1. The models of DCF are exactly the differentially closed fields.

It is not hard to show that if f, g ∈ K{X} are as above, then there is L ⊇ K
containing a solution to the system f(X) = 0 and Y g(X) − 1 = 0. Indeed we
could take L to be the fraction field of K{X}/P , where P is a minimal differential
prime ideal with f ∈ P . Iterating this construction shows that any differential
field can be extended to a differentially closed field. Thus any existentially closed
field is differentially closed.
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The next theorem of Blum shows that the converse holds (see [Marker et al.
1996] for the proof).

Theorem 1.1. The theory DCF has quantifier elimination and hence is model
complete.

Corollary 1.2. (i) DCF is a complete theory .
(ii) A differential field is existentially closed if and only if it is differentially
closed .

Proof. (i) The rational numbers with the trivial derivation form a differential
subfield of any differentially closed field. If K0 and K1 are models of DCF and φ
is a quantifier free sentence, then there is a quantifier free sentence ψ such that
DCF |= φ ←→ ψ. But Ki |= ψ if and only if Q |= ψ. Hence K0 |= φ if and only
if K1 |= φ and DCF is complete.

(ii) We already remarked that every existentially closed field is differentially
closed. Suppose K is differentially closed. Suppose f1 = · · · = fm = 0 is a system
of polynomial differential equations solvable in an extension L of K. We can find
K1 an extension of L which is differentially closed. By model completeness K is
an elementary submodel of K1. Since there is a solution in K1 there is a solution
in K. �

Pierce and Pillay [1998] have given a more geometric axiomatization of DCF.
Suppose K is a differential field and V ⊆ Kn is an irreducible algebraic variety
defined over K. Let I(V ) ⊂ K[X1, . . . , Xn] be the ideal of polynomials vanishing
on V and let f1, . . . , fm generate I(V ). If f =

∑
ai1,...,imX

i1
1 · · ·Xim

m , let fδ =∑
δ(ai1,...,im)Xi1

1 · · ·Xim
m . The tangent bundle T (V ) can be identified with the

variety

T (V ) =

{
(x, y) ∈ K2n : x ∈ V ∧

n∑
j=1

yj
∂fi
∂Xj

(x) = 0 for i = 1, . . . ,m

}
We define the first prolongation of V to be the algebraic variety

V (1) =

{
(x, y) ∈ K2n : x ∈ V ∧

n∑
j=1

yj
∂fi
∂Xj

(x) + fδi (x) = 0 for i = 1, . . . ,m

}
.

If V is defined over the constant field C, then each fδi vanishes, and V (1) is T (V ).
In general, for a ∈ V , the vector space Ta(V ) = {b : (a, b) ∈ T (V )} acts regularly
on V (1)

a = {b : (a, b) ∈ V (1)}, making V (1) a torsor under T (V ). It is easy to see
that (x, δ(x)) ∈ V (1) for all x ∈ V . Thus the derivation is a section of the first
prolongation.

Theorem 1.3. For K be a differential field , the following statements are equiv-
alent :

(i) K is differentially closed .
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(ii) K is existentially closed .
(iii) K is algebraically closed and for every irreducible algebraic variety V ⊆ Kn

if W is an irreducible subvariety of V (1) such that the projection of W onto V is
Zariski dense in V and U is a Zariski open subset of V , then (x, δ(x)) ∈ U for
some x ∈ V .

Proof. We know (i) ⇐⇒ (ii).

(iii) ⇒ (i) Suppose f(X) ∈ K{X} has order n and g(X) has lower order. Say
f(X) = p(X, δ(X), . . . , δn(X)) and g = q(X, δ(X), . . . δn−1(X)), where p and q

are polynomials. Without loss of generality p is irreducible. Set V = Kn and

W = {(x, y) ∈ K2n : y1 = x2, y2 = x3, . . . , yn−1 = xn, p(x1, . . . , xn, yn) = 0}.

It is easy to see that W is irreducible and W projects generically onto Kn. Let
U = {(x, y) ∈ W : q(x) 6= 0}. By (iii) there is x ∈ Kn such that (x, δ(x)) ∈ U .
Then f(x1) = 0 and g(x1) 6= 0.

(i) ⇒ (iii) Let V , W and U be as in (iii). Let (x, y) be a generic point of U
over K. One can show that there is a differential field L extending K(x, y) with
δ(x) = y (indeed we can extend δ to K(x, y)). We may assume L is differentially
closed. Then (x, δ(x)) ∈ U and by model completeness we can find a solution in
K. �

2. The Kolchin Topology

We say that an ideal I in K{X1, . . . , Xn} is a δ-ideal if δ(f) ∈ I whenever
f ∈ I. If I ⊂ K{X1, . . . , Xn}, let Vδ(I) = {x ∈ Kn : f(x) = 0 for all f ∈ I}.
We can topologize Kn by taking the Vδ(I) as basic closed sets. This topology is
referred to as the Kolchin topology or the δ-topology.

There are infinite ascending sequences of δ-ideals. For example,

〈X2〉 ⊂
〈
X2, δ(X)2

〉
⊂ · · · ⊂

〈
X2, δ(X)2, . . . , δm(X)2

〉
⊂ · · · ,

where 〈f1, . . . , fn〉 is the δ-ideal generated by f1, . . . , fn. But radical δ-ideals are
well behaved (for a proof see [Kaplansky 1957] or [Marker et al. 1996]).

Theorem 2.1 (Ritt–Raudenbush Basis Theorem). (i) There are no infi-
nite ascending chains of radical differential ideals in K{X1, . . . , Xn}. For any
radical differential ideal I there are f1, . . . , fm such that I =

√
〈f1, . . . , fm〉.

(ii) If I ⊂ K{X1, . . . , Xn} is a radical δ-ideal , there are distinct prime δ-ideals
P1, . . . , Pm such that I = P1 ∩ · · · ∩Pm and P1, . . . , Pm are unique up to permu-
tation.

Thus the δ-topology is Noetherian and any δ-closed set is a finite union of irre-
ducible δ-closed sets.
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Theorem 2.2 (Seidenberg’s Differential Nullstellensatz). Let K be
a differentially closed field . I 7→ Vδ(I) is a one to one correspondence between
radical δ-ideals and δ-closed sets.

Proof. It is easy to see that Iδ(Y ) is a radical δ-ideal for all Y ⊆ Kn. Suppose
I and J are radical δ-ideals and g ∈ J \ I. By Theorem 2.1 there is a prime
δ-ideal P ⊇ I with g 6∈ P . It suffices to show there is x ∈ Vδ(P ) with g(x) 6= 0.
Let P =

√
〈f1, . . . , fm〉, and let L be a differentially closed field containing

K{X1, . . . , Xn}/P . Let x = (X1/P, . . . ,Xn/P ). Clearly f(x) = 0 for f ∈ P and
g(x) 6= 0. In particular,

L |= ∃v1 . . .∃vn f1(v1, . . . , vn) = . . . = fm(v1, . . . , vn) = 0 ∧ g(v1, . . . , vn) 6= 0.

By model completeness the same sentence is true in K. Thus there is x ∈ Kn

such that x ∈ Vδ(P ) \ Vδ(J). �

By the basis theorem every δ-closed set is definable. We say that a subset of Kn

is δ-constructible if it is a finite boolean combination of δ-closed sets. The δ-
constructible sets are exactly those defined by quantifier free L-formulas. Quan-
tifier elimination implies that the δ-constructible sets are exactly the definable
sets. Thus the projection of a δ-constructible set is δ-constructible.

3. ω-Stability and Dimension

Let K be a differentially closed fields and let F be a differential subfield of K.
If p ∈ Sn(F ), let Iδ(p) = {f ∈ F{X1, . . . , Xn} : “f(x1, . . . , xn) = 0” ∈ p}. The
arguments for types in algebraically closed fields in [Marker 2000] work here to
show that p 7→ Ip is a bijection from Sn(F ) onto the space of prime δ-ideals.

Corollary 3.1. DCF is ω-stable.

Proof. Let K and F be as above. We must show that |Sn(F )| = |F |. But for
all p, we can find f1, . . . , fm such that Iδ(p) =

√
〈f1, . . . , fm〉. Thus the number

of complete n-types is equal to |F{X1, . . . , Xn}| = |F |. �

There is an important algebraic application of ω-stability. If F is a differential
field, we say that a differentially closed K ⊇ F is a differential closure of F if
for any differentially closed L ⊇ F there is a differential embedding of K into L
fixing F .

This is related to a general model-theoretic notion mentioned in [Hart 2000].
A prime model of T over A is a model M |= T with A ⊆M , such that if N |= T

and A ⊂ N , then there is an elementary embedding j : M→ N such that j|A is
the identity. For DCF, prime model extensions are exactly differential closures
(recall that, by model completeness, all embeddings are elementary).

Theorem 3.2. Let T be an ω-stable theory , M |= T and A ⊆ M . There is a
prime model of T over A. If N0 and N1 are prime models of T over A, then N0

and N1 are isomorphic over A.
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The existence of prime models was proved by Morley and uniqueness (under less
restrictive assumptions) is due to Shelah. The following corollary was later given
a slightly more algebraic proof by Kolchin.

Corollary 3.3. Every differential field F has a differential closure and any
two differential closures of F are unique up to isomorphism over F .

Differential closures need not be minimal. Let F be the differential closure of Q.
Independent results of Kolchin, Rosenlicht and Shelah show there is a nontrivial
differential embedding j : F → F with j(F ) a proper subfield of F .

Since DCF is ω-stable, we can assign Morley rank to types and definable sets.
This gives us a potentially useful notion of dimension. It is interesting to see
how this corresponds to more algebraic notions of dimension.

There are two natural cardinal dimensions. Suppose V ⊆ Kn is an irreducible
δ-closed set. Let K[V ] be the differential coordinate ring K{X1, . . . , Xn}/Iδ(V ).
Lettd(V ) be the transcendence degree of K[V ] over K. Often td(V ) is infinite.
We say that elements of a differential ring are differentially dependent over K if
they satisfy a differential polynomial over K. Lettdδ(V ) be the size of a maximal
differentially independent subset of K[V ] over V . Note thattd(V ) is finite if and
only iftdδ(V ) = 0. If V is an algebraic variety of dimension d, thentdδ(V ) = d.
Suppose W and V are proper irreducible δ-closed subsets of K with W ⊂ V .
Thentdδ(V ) =tdδ(W ) = 0 andtd(W ) <td(V ).

There is a natural ordinal dimension that arises from the Noetherian topology.
This is the analog of Krull dimension in Noetherian rings. If V is a non-empty
irreducible δ-closed set, we define dimδ(V ) as follows. If V is a point, then
dimδ(V ) = 0. Otherwise

dimδ(V ) = sup{dimδ(W ) + 1 : W ⊂ V is irreducible, δ-closed and nonempty}.

Since Vδ(X) ⊂ Vδ(δ(X)) ⊂ · · · ⊂ Vδ(δn(X)) ⊂ · · ·K, we have dimδ(K) ≥ ω.
The remarks above imply that if V ⊂ K is δ-closed, then dimδ(V ) ≤ td(V ).
Hence dimδ(K) = ω.

There are two model-theoretic notions of dimension, Morley rank and U-rank.
We refer to [Hart 2000] for the definition of Morley rank but will describe U-
rank in this context. If A, B and C are subsets of a differentially closed field, we
say that B and C are independent over A if the differential field generated by
B ∪A and the differential field generated by C ∪A are linearly disjoint over the
algebraic closure of the differential field generated by A. If B ⊃ A, p ∈ Sn(A),
q ∈ Sn(B) and p ⊂ q, we say that q is a forking extension of p, if for any a

realizing q, a and B are dependent over A.

We define the U-rank of a type p ∈ Sn(A) inductively as follows:

(i) U(p) ≥ 0.
(ii) If α is a limit ordinal, then U(p) ≥ α if and only if U(p) ≥ β for all β < α.
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(iii) U(p) ≥ α + 1 if and only if there is B ⊃ A and q ∈ Sn(B), q a forking
extension of p and U(q) ≥ α.

We write U(b/A) for U(tp(b/A)). If X is definable over A, we let U(X) be the
maximum U(b/A) for b ∈ X.

In algebraically closed fields we also have four notions of dimension (transcen-
dence degree, Krull dimension, Morley rank and U-rank), all of which agree. In
DCF the situation is different.

Theorem 3.4. We have

U(V ) ≤ RM(V ) ≤ dimδ(V ) ≤ ω · tdδ(V )

and if tdδ(V ) = 0, then dimδ(V ) ≤ td(V ).

Theorem 3.4 is a combination of results of Poizat, Johnson and Pong (see [Pong
≥ 2001] for details). There are examples due to Kolchin, Poizat, and Hrushovski
and Scanlon showing that any of these inequalities may be strict. Although
these notions may disagree, it is easy to see that U-rank is finite if and only if
transcendence degree is finite. Thus finite dimensionality does not depend on
which notion of dimension we choose. It is also easy to see that U(Kn) = ωn so
the notions of dimension agree on Kn (and on all algebraic varieties).

The following result of Pong [≥ 2001] shows the usefulness of U-rank. It is
part of his proof that any finite rank δ-closed set is affine.

Theorem 3.5. Suppose V ⊂ Pn is δ-closed and U(V ) < ω. If H ⊂ Pn is a
generic hyperplane, then H ∩ V = ∅.

Proof. Let H be the set of all hyperplanes in Pn. Since H is isomorphic to
P
n, U(H) = ωn. Similarly for any point x, the set of hyperplanes through x has

U-rank ω(n−1) over x. Let I = {(v,H) : H ∈ H, v ∈ V ∩H}. Suppose (v,H) ∈
I and U((v,H)) is maximal. The Lascar inequality (valid in any superstable
theory) asserts that

U(v,H) ≤ U(H/v)⊕U(v),

where ⊕ is the symmetric sum of ordinals. In this case H is in the set of
hyperplanes through v, so U(H/v) ≤ ω(n − 1). Since U(V ) is finite, U(v) < ω.
Thus U(v,H) < ωn. But if H were a generic hyperplane U(v,H) ≥U(H) = ωn,
a contradiction. �

We conclude this section by summarizing some important results about inter-
pretability in DCF.

Theorem 3.6 (Poizat). DCF has elimination of imaginaries. In particular
the quotient of a δ-constructible set by a δ-constructible equivalence relation is
δ-constructible.
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Theorem 3.7. (i) (Pillay) Any group interpretable in a differentially closed
field K is definably isomorphic to the K-rational points of a differential algebraic
group defined over K.
(ii) (Sokolovic) Any infinite field of finite rank interpretable in a differentially
closed field is definably isomorphic to the field of constants.
(iii) (Pillay) Any field of infinite rank interpretable in K |= DCF is definably
isomorphic to K.

4. Strongly Minimal Sets in Differentially Closed Fields

Let K be a ℵ0-saturated differentially closed field. Let X ⊂ Kn be definable.
By adding parameters to the language we assume that X is defined over ∅.
Recall that X is strongly minimal if whenever Y ⊆ X is definable then either
Y or X \ Y is finite. For A ⊆ K let aclδ(A) be the algebraic closure of the
differential field generated by A. In DCF this is exactly the model-theoretic
notion of algebraic closure. If X is strongly minimal let aclδX(A) = aclδ(A)∩X.
For A ⊆ X, let dim(A) be the maximum cardinality of an aclδ-independent
subset of aclδ(X).

We say that a strongly minimal set X is trivial if

aclδX(A) =
⋃
a∈A

aclδX({a})

for all A ⊆ X. Examples of trivial strongly minimal sets are a set with no
structure or the natural numbers with the successor function.

We say that a strongly minimal set X is locally modular if

dim(A ∪B) = dim(A) + dim(B)− dim(A ∩B)

whenever A and B are finite dimensional aclδX -closed subsets of X and A∩B 6=
∅. Vector spaces are good examples of locally modular strongly minimal sets.
Indeed general results of Hrushovski show that any nontrivial locally modular
strongly minimal set is essentially a vector space.

To fully understand the model theory of any ω-stable theory it is essential
to understand the strongly minimal sets. In differentially closed fields this is
particularly fascinating because there are trivial, nontrivial locally modular and
non-locally modular strongly minimal sets.

Trivial strongly minimal sets first arose in the proofs that differential closures
need not be minimal. For example the solution sets to the differential equations

δ(X) =
X

X + 1
and δ(X) = X3−X2 are (after throwing out 0 and, in the second

case, 1) sets of total indiscernibles (that is, sets with no additional structure).
There is one obvious non-locally modular strongly minimal set, C the field of

constants. Hrushovski and Sokolovic proved that this is essentially the only one.
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Theorem 4.1. If X ⊂ Kn is strongly minimal and non-locally modular , then
X is non-orthogonal to the constants.

The proof proceeds by first showing that strongly minimal sets in differentially
closed field are Zariski geometries, in the sense of [Hrushovski and Zilber 1996].
The main theorem on Zariski geometries says that non-locally modular Zariski
geometries are non-orthogonal to definable fields, but the only finite rank defin-
able field is, by Theorem 3.7, the constants.

Hrushovski and Sokolovic also showed that nontrivial locally modular strongly
minimal sets arise naturally in studying abelian varieties as differential algebraic
groups. In his proof of the Mordell conjecture for function fields, Manin proved
the following result.

Theorem 4.2. If A is an abelian variety , then there is a nontrivial differential
algebraic group homomorphism µ : A→ Kn.

For example, if A is the elliptic curve y2 = x(x−1)(x−λ), where δ(λ) = 0, then

µ(x, y) =
δ(x)
y
.

If δ(λ) 6= 0, then µ is a second order differential operator. Let A# be the δ-
closure of the torsion points of A. We can choose µ so that A# is the kernel of µ.
Building on 4.2 and further work of Buium, Hrushovski and Sokolovic showed:

Theorem 4.3. Suppose A is a simple abelian variety defined over K. Either

(i) A is isomorphic to an abelian variety B defined over the constants, or
(ii) A# is locally modular and strongly minimal .

Moreover, any nontrivial locally modular strongly minimal set is non-orthogonal
to A# for some such A, and A# and B# are non-orthogonal if and only if A and
B are isogenous.

Thus Hrushovski and Sokolovic have completely characterized the nontrivial
strongly minimal sets. Understanding the trivial ones is still a difficult open
problem. We say that a strongly minimal set X is ℵ0-categorical if in any model
the dimension of the elements of the model in X is infinite. One open question
is: In DCF is every trivial strongly minimal set ℵ0-categorical? Hrushovski has
proved this for strongly minimal sets of transcendence degree one.

5. Diophantine Applications

Hrushovski used Theorem 4.3 in his proof of the Mordell–Lang conjecture for
function fields in characteristic zero.

Theorem 5.1. Suppose K ⊃ k are algebraically closed fields of characteristic
zero, A is an abelian variety defined over K such that no infinite subabelian
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variety of A is isomorphic to an abelian variety defined over k, Γ is a finite rank
subgroup of A, and X is a subvariety of A such that X ∩ Γ is Zariski dense in
X. Then X is a finite union of cosets of abelian subvarieties of A.

I will sketch the ideas of the proof; for full details see [Hrushovski 1996], [Bous-
caren 1998] or [Pillay 1997]. First I give the full proof in one easy case.

Theorem 5.2. Suppose K ⊃ k are algebraically closed fields of characteristic
zero, A is a simple abelian variety defined over K that is not isomorphic to an
abelian variety defined over k, Γ is the torsion points of A, and X is a proper
subvariety of A. Then X ∩ Γ is finite.

Proof. The main idea is to move to a differential field setting where we may
apply model-theoretic tools. In doing so we will replace the group Γ by A#, a
small (that is, finite-dimensional) differential algebraic group.

The first step is to define a derivation δ : K → K such that k = {x ∈ K :
δ(x) = 0}. One can show that if K̂ is the differential closure of K then the field
of constants of K̂ is still k. Thus without loss of generality we may assume that
K is a differentially closed field and k is the constant field of K.

Let A# be the δ-closure of the torsion points of A. It suffices to show that
A# ∩X is finite. Suppose not. Since A# is strongly minimal, A# \X is finite.
But then the Zariski closure of A# is contained in X ∪A# \X, which is properly
contained in A. This is a contradiction since the torsion points are Zariski dense.

�

The proof above does not explicitly use the fact that A# is locally modular
(though this does come into the proof that it is strongly minimal). Local mod-
ularity plays more of a role if we consider larger groups Γ. Suppose K, k,A and
X are as above and Γ is a finite rank subgroup of A. Let µ : A → Kn be a
definable homomorphism with kernel A#. Since Γ has finite rank, the image of
Γ under µ is contained in V ⊂ Kn which is a finite dimensional k-vector space.
Consider G = µ−1(V ). This is a definable finite Morley rank subgroup of A.
Some analysis of this group allows us to conclude that it is 1-based (see [Hart
2000] for a definition: basically this means that all of the strongly minimal sets
are locally modular). Hrushovski and Pillay showed that in an 1-based group G
any definable subset of Gn is a boolean combination of cosets of definable sub-
groups. In particular X∩G will be a finite union of cosets of definable subgroups
of G. If any of these subgroups is infinite, then its Zariski closure is an algebraic
subgroup and must hence be the whole group. This would contradict the fact
that the Zariski closure would be contained in X.

To prove Theorem 5.1 in general, we use the fact that every abelian variety is
isogenous to a direct sum of simple abelian subvarieties together with a number
of techniques from finite Morley rank group theory.
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