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Introduction

| wrote this text for a one semester course at the sophomore-junior level. Our experience with students taking
our junior physics courses is that even if they've had the mathematical prerequisites, they usually need more experience
using the mathematics to handle it efficiently and to possess usable intuition about the processes involved. If you've seen
infinite series in a calculus course, you may have no idea that they're good for anything. If you've taken a differential
equations course, which of the scores of techniques that you've seen are really used a lot?

The world is (at least) three dimensional so you clearly need to understand multiple integrals, but will everything
be rectangular?

How do you learn intuition?

When you've finished a problem and your answer agrees with the back of the book or with your friends or even a
teacher, you're not done. The way do get an intuitive understanding of the mathematics and of the physics is to analyze
your solution thoroughly. Does it make sense? There are almost always several parameters that enter the problem, so
what happens to your solution when you push these parameters to their limits? In a mechanics problem, what if one
mass is much larger than another? Does your solution do the right thing? In electromagnetism, if you make a couple of
parameters equal to each other does it reduce everything to a simple, special case? When you're doing a surface integral
should the answer be positive or negative and does your answer agree?

When you address these questions to every problem you ever solve, you do several things. First, you'll find your
own mistakes before someone else does. Second, you acquire an intuition about how the equations ought to behave and
how the world that they describe ought to behave. Third, It makes all your later efforts easier because you will then have
some clue about why the equations work the way they do. It reifies the algebra.

Does it take extra time? Of course. It will however be some of the most valuable extra time you can spend.

Is it only the students in my classes, or is it a widespread phenomenon that no one is willing to sketch a graph?
(“Pulling teeth” is the cliché that comes to mind.) Maybe you've never been taught that there are a few basic methods
that work, so look at section 1.8. And keep referring to it. This is one of those basic tools that is far more important
than you've ever been told. It is astounding how many problems become simpler after you've sketched a graph. Also,
until you've sketched some graphs of functions you really don’t know how they behave.

When | taught this course | didn't do everything that I'm presenting here. The two chapters, Numerical Analysis
and Tensors, were not in my one semester course, and | didn't cover all of the topics along the way. Several more chapters
were added after the class was over, so this is now far beyond a one semester text. There is enough here to select from
if this is a course text, but if you are reading it on your own then you can move through it as you please, though you
will find that the first five chapters are used more in the later parts than are chapters six and seven. Chapters 8, 9, and
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13 form a sort of package. I've tried to use examples that are not all repetitions of the ones in traditional physics texts
but that do provide practice in the same tools that you need in that context.

The pdf file that I've placed online is hyperlinked, so that you can click on an equation or section reference to go
to that point in the text. To return, there's a Previous View button at the top or bottom of the reader or a keyboard
shortcut to do the same thing. [Command«+ on Mac, Alt«< on Windows, Control<— on Linux-GNU] The index pages
are hyperlinked, and the contents also appear in the bookmark window.

| chose this font for the display versions of the text because it appears better on the screen than does the more
common Times font. The choice of available mathematics fonts is more limited.

I'd like to thank the students who found some, but probably not all, of the mistakes in the text. Also Howard
Gordon, who used it in his course and provided me with many suggestions for improvements. Prof. Joseph Tenn of
Sonoma State University has given me many very helpful ideas, correcting mistakes, improving notation, and suggesting
ways to help the students.

2008
A change in notation in this edition: For polar and cylindrical coordinate systems it is common to use theta for the polar
angle in one and phi for the polar angle in the other. | had tried to make them the same () to avoid confusion, but
probably made it less rather than more helpful because it differed from the spherical azimuthal coordinate. In this edition
all three systems (plane polar, cylindrical, spherical) use phi as ¢ = tan=!(y/x). In line integrals it is common to use
ds for an element of length, and many authors will use dS for an element of area. | have tried to avoid this confusion
by sticking to d¢ and dA respectively (with rare exceptions).

In many of the chapters there are “exercises” that precede the “problems.” These are supposed to be simpler and
mostly designed to establish some of the definitions that appeared in the text.

This text is now available in print from Dover Publishers. They have agreed that the electronic version will remain
available online.
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Basic Stuft

1.1 Trigonometry
The common trigonometric functions are familiar to you, but do you know some of the tricks to remember (or to derive
quickly) the common identities among them? Given the sine of an angle, what is its tangent? Given its tangent, what
is its cosine? All of these simple but occasionally useful relations can be derived in about two seconds if you understand
the idea behind one picture. Suppose for example that you know the tangent of 8, what is sin#? Draw a right triangle
and designate the tangent of 6 as x, so you can draw a triangle with tan = x/1.

The Pythagorean theorem says that the third side is v/1 + x2. You now read the sine
from the triangle as x/v/1 + 22, so

. tan 0
sinf) = ———— 1
V1 + tan? 6

Any other such relation is done the same way. You know the cosine, so what's the cotangent? Draw a different triangle
where the cosine is /1.

Radians

When you take the sine or cosine of an angle, what units do you use? Degrees? Radians? Cycles? And who invented
radians? Why is this the unit you see so often in calculus texts? That there are 360° in a circle is something that you
can blame on the Sumerians, but where did this other unit come from?

20

7

S
R 2R
It results from one figure and the relation between the radius of the circle, the angle drawn, and the length of the
arc shown. If you remember the equation s = R6, does that mean that for a full circle # = 360° so s = 360R? No.
For some reason this equation is valid only in radians. The reasoning comes down to a couple of observations. You can
see from the drawing that s is proportional to # — double 6 and you double s. The same observation holds about the
relation between s and R, a direct proportionality. Put these together in a single equation and you can conclude that

s=CRSH
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where C' is some constant of proportionality. Now what is C?
You know that the whole circumference of the circle is 27 R, so if § = 360°, then

2rR = C'R360°, and o= degree™!
180
It has to have these units so that the left side, s, comes out as a length when the degree units cancel. This is an
awkward equation to work with, and it becomes very awkward when you try to do calculus. An increment of one in Af
is big if you're in radians, and small if you're in degrees, so it should be no surprise that Asinf/A# is much smaller in
the latter units:

g sinf = % cosf in degrees

This is the reason that the radian was invented. The radian is the unit designed so that the proportionality constant is
one.

C = 1radian™! then s = (1 radianfl)RQ

In practice, no one ever writes it this way. It's the custom simply to omit the C' and to say that s = R with 6 restricted
to radians — it saves a lot of writing. How big is a radian? A full circle has circumference 27 R, and this equals Rf
when you've taken C' to be one. It says that the angle for a full circle has 27 radians. One radian is then 360/27 degrees,
a bit under 60°. Why do you always use radians in calculus? Only in this unit do you get simple relations for derivatives
and integrals of the trigonometric functions.

Hyperbolic Functions
The circular trigonometric functions, the sines, cosines, tangents, and their reciprocals are familiar, but their hyperbolic
counterparts are probably less so. They are related to the exponential function as

et +e " et —e™ "t sinhz e’ —e™ "

hr= ——— sinhy = ——— tanhxr = = 1.1
o8 2 ’ Sl 2 ’ an coshr eT4e 2 (1.1)

The other three functions are

cschx = cothx =
coshzx’ sinhz’ tanh x

sechx =

Drawing these is left to problem 1.4, with a stopover in section 1.8 of this chapter.
Just as with the circular functions there are a bunch of identities relating these functions. For the analog of
cos? 0 + sin? 6 = 1 you have
cosh? @ — sinh? 0 = 1 (1.2)
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For a proof, simply substitute the definitions of cosh and sinh in terms of exponentials and watch the terms cancel.
(See problem 4.23 for a different approach to these functions.) Similarly the other common trig identities have their

counterpart here.
1+ tan? 0 = sec® has the analog 1 — tanh? § = sech? (1.3)

The reason for this close parallel lies in the complex plane, because cos(ix) = cosh x and sin(zx) = ¢ sinhx. See chapter
three.

The inverse hyperbolic functions are easier to evaluate than are the corresponding circular functions. I'll solve for
the inverse hyperbolic sine as an example

et —e %

5 , solve for z.

y =sinhz means x =sinh~ly, Y=
Multiply by 2e* to get the quadratic equation
2e%y =e** -1 or (eﬂ”)2 —2y(e”) —1=0

The solutions to this are e = y++/y? + 1, and because \/y? + 1 is always greater than |y|, you must take the positive
sign to get a positive . Take the logarithm of e* and

z=sinh 'y =In(y+Vy2+1)

(—o0 <y < 400)

As x goes through the values —oo to +o0, the values that sinh x takes on go over the range —oco to 4+00. This implies
that the domain of sinh ™% is —o0o < 1 < 400. The graph of an inverse function is the mirror image of the original
function in the 45° line y = x, so if you have sketched the graphs of the original functions, the corresponding inverse
functions are just the reflections in this diagonal line.
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The other inverse functions are found similarly; see problem 1.3

sinh ™'y =In (y + 42 +1)

cosh™'y =In(y£+/y2—1), y>1
1. 1

tanh™ 1y = 2lnli_§z, ly| <1 (1.4)
1 1

coth’lyzilnyfl, ly| > 1

The cosh™! function is commonly written with only the + sign before the square root. What does the other sign do?
Draw a graph and find out. Also, what happens if you add the two versions of the cosh™!?
The calculus of these functions parallels that of the circular functions.
- det*—e™* e'+e® b
75 Sin T = Tz 5 = 5 = coshz
Similarly the derivative of cosh z is sinh z. Note the plus sign here, not minus.

Where do hyperbolic functions occur? If you have a mass in equilibrium, the total force on it is zero. If it's in
stable equilibrium then if you push it a little to one side and release it, the force will push it back to the center. If it is
unstable then when it's a bit to one side it will be pushed farther away from the equilibrium point. In the first case, it
will oscillate about the equilibrium position and for small oscillations the function of time will be a circular trigonometric
function — the common sines or cosines of time, Acoswt. If the point is unstable, the motion will be described by
hyperbolic functions of time, sinh wt instead of sinwt. An ordinary ruler held at one end will swing back and forth,
but if you try to balance it at the other end it will fall over. That's the difference between cos and cosh. For a deeper
understanding of the relation between the circular and the hyperbolic functions, see section 3.3

1.2 Parametric Differentiation
The integration techniques that appear in introductory calculus courses include a variety of methods of varying usefulness.
There's one however that is for some reason not commonly done in calculus courses: parametric differentiation. It's best

introduced by an example.
o0
/ xe " dx
0

You could integrate by parts n times and that will work. For example, n = 2:

o0 [e.e] (e}

o0
+/ 2ePdr=0—2e"% =2
0 0

2 —x

o0
= —x°€¢ + / 20e P dx =0 —2xe™ "
0

0 0
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Instead of this method, do something completely different. Consider the integral

/ e “dx (1.5)
0

It has the parameter o in it. The reason for this will be clear in a few lines. It is easy to evaluate, and is

[e.e]

/OO e dx = ie_o“r = 1
0 - 0 o
Now differentiate this integral with respect to «,
d > d 1 o0 -1
/ ey = or —/ re *dr = —
da J do 0 Q@
: ) e 2 o —-2-3
And again and again: +/ r2e” Y dy = +—3, —/ r3e % dy = 1
« Q
0 0
The nt" derivative is
e +n!
+ / PO g — (1.6)
0 an+l

Set o = 1 and you see that the original integral is n!. This result is compatible with the standard definition for 0!. From
the equation n! = n-(n — 1)!, you take the case n = 1, and it requires 0! = 1 in order to make any sense. This integral
gives the same answer for n = 0.

The idea of this method is to change the original problem into another by introducing a parameter. Then
differentiate with respect to that parameter in order to recover the problem that you really want to solve. With a little
practice you'll find this easier than partial integration. Also see problem 1.47 for a variation on this theme.

Notice that | did this using definite integrals. If you try to use it for an integral without limits you can sometimes
get into trouble. See for example problem 1.42.

1.3 Gaussian Integrals
Gaussian integrals are an important class of integrals that show up in kinetic theory, statistical mechanics, quantum
mechanics, and any other place with a remotely statistical aspect.

2
/d:mc”e ar
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The simplest and most common case is the definite integral from —oo to +o00 or maybe from 0 to co.
If n is a positive odd integer, these are elementary,

I/_\ /Oo de e %" = (n odd) (1.7)

| n=1

To see why this is true, sketch graphs of the integrand for a few more odd n.
For the integral over positive 2 and still for odd n, do the substitution ¢ = az?.

o0 2 1 o0 _ _ 1

Because n is odd, (n — 1)/2 is an integer and its factorial makes sense.
If n is even then doing this integral requires a special preliminary trick. Evaluate the special case n = 0 and
a = 1. Denote the integral by I, then

[:/ dre ™", and I% = (/ dxe_x2> (/ dye_y2>

In squaring the integral you must use a different label for the integration variable in the second factor or it will get
confused with the variable in the first factor. Rearrange this and you have a conventional double integral.

I’ = /OO dx /OO dy e~ @*+¥?)

This is something that you can recognize as an integral over the entire -y plane. Now the trick is to switch to polar
coordinates*. The element of area dx dy now becomes 7 dr d¢, and the respective limits on these coordinates are 0 to
oo and 0 to 2. The exponent is just 72 = x2 + 12

00 2T 2
I? :/ rdr dpe™"
0 0

* See section 1.7 in this chapter
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The ¢ integral simply gives 2. For the r integral substitute % = 2 and the result is 1/2. [Or use Eq. (1.8).] The two
integrals together give you 7.

I? =, so / dee™ =1 (1.9)

Now do the rest of these integrals by parametric differentiation, introducing a parameter with which to carry out
. . 2 2 . . . . .
the derivatives. Change e to e~ ®*", then in the resulting integral change variables to reduce it to Eq. (1.9). You get

/_Oo dre % = g, so /_Oo dr 22e™ %" = —di\/z = % (C;gj;) (1.10)

You can now get the results for all the higher even powers of x by further differentiation with respect to a.

1.4 erf and Gamma

What about the same integral, but with other limits? The odd-n case is easy to do in just the same way as when the
limits are zero and infinity: just do the same substitution that led to Eq. (1.8). The even-n case is different because it
can't be done in terms of elementary functions. It is used to define an entirely new function.

(1.11)

erf(x)_z/mdteﬁ r 0. 025 050 075 100 125 150 175 2.0
VT Jo erf 0. 0276 0520 0711 0.843 0923 0.967 0.987 0.995

This is called the error function. It's well studied and tabulated and even shows up as a button on some* pocket
calculators, right along with the sine and cosine. (Is erf odd or even or neither?) (What is erf(+00)?)
A related integral worthy of its own name is the Gamma function.

I(x) = /OOO dtt*tet (1.12)

The special case in which z is a positive integer is the one that | did as an example of parametric differentiation
to get Eq. (1.6). Itis

I'(n)=(n—-1)!

* See for example rpncalculator (v1.96 the latest). It is the best desktop calculator that I've found (Mac and
Windows). This main site seems (2008) to have disappeared, but | did find other sources by searching the web for
the pair “rpncalculator” and baker. The latter is the author's name. | found mac.rbytes.net/cat/mac/scientific/rpn-
calculator-x/


http://mac.rbytes.net/cat/mac/scientific/rpn-calculator-x/
http://mac.rbytes.net/cat/mac/scientific/rpn-calculator-x/
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The factorial is not defined if its argument isn't an integer, but the Gamma function is perfectly well defined for
any argument as long as the integral converges. One special case is notable: x = 1/2.

r(1/2) _/0 dtt=1/2et —/0 uduute ™ = 2/0 due™™ = 7 (1.13)

| used t = u? and then the result for the Gaussian integral, Eq. (1.9). You can use parametric differentiation to derive
a simple and useful recursion relation. (See problem 1.14 or 1.47.)

xl(x) =T(x+1) (1.14)
From this you can get the value of I'(11/2), I'(21/2), etc. In fact, if you know the value of the function in the interval
between one and two, you can use this relationship to get it anywhere else on the axis. You already know that I'(1) =
1 =T(2). (You do? How?) As x approaches zero, use the relation I'(x) = I'(x + 1) /2 and because the numerator for
small x is approximately 1, you immediately have that

[(z)~1/x  for small x (1.15)

The integral definition, Eq. (1.12), for the Gamma function is defined only for the case that > 0. [The behavior
of the integrand near ¢ = 0 is approximately t*~!. Integrate this from zero to something and see how it depends on z.]
Even though the original definition of the Gamma function fails for negative , you can extend the definition by using
Eq. (1.14) to define I for negative arguments. What is I'(—1/5) for example? Put x = — 1/ in Eq. (1.14).

—%F(—1/2) =T(-(1/2) +1) =T(1/2) = /7, so I(=1/2)=—2y7 (1.16)

The same procedure works for other negative x, though it can take several integer steps to get to a positive value of x
for which you can use the integral definition Eq. (1.12).

The reason for introducing these two functions now is not that they are so much more important than a hundred
other functions that | could use, though they are among the more common ones. The point is that the world doesn't end
with polynomials, sines, cosines, and exponentials. There are an infinite number of other functions out there waiting for
you and some of them are useful. These functions can’t be expressed in terms of the elementary functions that you've
grown to know and love. They're different and have their distinctive behaviors.

9 s 4 44 4
i erf ﬂ [ 1/T
1-1 N I-5
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There are zeta functions and Fresnel integrals and Legendre functions and Exponential integrals and Mathieu
functions and Confluent Hypergeometric functions and ... you get the idea. When one of these shows up, you learn to
look up its properties and to use them. If you're interested you may even try to understand how some of these properties
are derived, but probably not the first time that you confront them. That's why there are tables, and the “Handbook
of Mathematical Functions” by Abramowitz and Stegun is a premier example of such a tabulation, and it's reprinted by
Dover Publications. There's also a copy on the internet* www.math.sfu.ca/“cbm/aands/ as a set of scanned page
images.

Why erf?

What can you do with this function? The most likely application is probably to probability. If you flip a coin 1000 times,
you expect it to come up heads about 500 times. But just how close to 500 will it be? If you flip it twice, you wouldn't
be surprised to see two heads or two tails, in fact the equally likely possibilities are

TT HT TH HH

This says that in 1 out of 22 = 4 such experiments you expect to see two heads and in 1 out of 4 you expect two tails.
For just 2 out of 4 times you do the double flip do you expect exactly one head. All this is an average. You have to try
the experiment many times to see your expectation verified, and then only by averaging many experiments.

It's easier to visualize the counting if you flip IV coins at once and see how they come up. The number of coins
that come up heads won't always be /2, but it should be close. If you repeat the process, flipping N coins again and
again, you get a distribution of numbers of heads that will vary around N/2 in a characteristic pattern. The result is
that the fraction of the time it will come up with k£ heads and N — k tails is, to a good approximation

2 28N _p N
e : where  0=F 5 (1.17)

The derivation of this can wait until section 2.6, Eq. (2.26). It is an accurate result if the number of coins that you flip
in each trial is large, but try it anyway for the preceding example where N = 2. This formula says that the fraction of
times predicted for k heads is

k=0:4/1/mre?=0208 k=1=N/2: 0564 k=2: 0208

The exact answers are 1/4, 2/4, 1/4, but as two is not all that big a number, the fairly large error shouldn't be distressing.
If you flip three coins, the equally likely possibilities are

* online books at University of Pennsylvania, onlinebooks.library.upenn.edu


http://store.doverpublications.com
http://www.math.sfu.ca/~cbm/aands/
http://onlinebooks.library.upenn.edu/
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There are 8 possibilities here, 23, so you expect (on average) one run out of 8 to give you 3 heads. Probability 1/8.
To see how accurate this claim is for modest values, take N = 10. The possible outcomes are anywhere from zero
heads to ten. The exact fraction of the time that you get k£ heads as compared to this approximation is

k= 0 1 2 3 4 5

exact: .000977 .00977 .0439 .117 .205 .246

approximate: .0017 .0103 .0417 .113 .206 .252
For the more interesting case of big IV, the exponent, e=20%/N  varies slowly and smoothly as d changes in integer
steps away from zero. This is a key point; it allows you to approximate a sum by an integral. If N = 1000 and ¢ = 10,
the exponent is 0.819. It has dropped only gradually from one. For the same N = 1000, the fraction of the time to get

exactly 500 heads is 0.025225, and this approximation is 1/2/1000m =0.025231.

Flip N coins, then do it again and again. In what fraction of the trials will the result be between N/2 — A
and N/2 + A heads? This is the sum of the fractions corresponding to 6 = 0, = £1, ..., § = +A. Because the
approximate function is smooth, | can replace this sum with an integral. This substitution becomes more accurate the

larger NN is.
A [ 2 _o52/N
_Ad(S TN©

Make the substitution 262 /N = 2% and you have

o /Tv[ G e =t 2 e

The error function of one is 0.84, so if A = \/N/2 then in 84% of the trials heads will come up between N/2 — /N/2
and N/2+ \/N/2 times. For N = 1000, this is between 478 and 522 heads.

1.5 Differentiating

When you differentiate a function in which the independent variable shows up in several places, how do you carry out
the derivative? For example, what is the derivative with respect to x of %7 The answer is that you treat each instance
of x one at a time, ignoring the others; differentiate with respect to that x and add the results. For a proof, use the
definition of a derivative and differentiate the function f(z,x). Start with the finite difference quotient:

flz+ Az, z+ Azx) — f(z, )
Ax
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flx+ Az, x4+ Az) — f(x, 2+ Azx) + f(z, 2 + Azx) — f(z,2)
N Ax
 fle+ Az, o+ Ax) — f(v, v+ Az)  f(r, 2+ Az) — f(z,7)
= N + Ao (1.19)

The first quotient in the last equation is, in the limit that Az — 0, the derivative of f with respect to its first argument.
The second quotient becomes the derivative with respect to the second argument. The prescription is clear, but to
remember it you may prefer a mathematical formula. A notation more common in mathematics than in physics is just
what's needed:

d
dt
where D1 means “differentiate with respect to the first argument.” The standard “product rule” for differentiation is a

special case of this.
For example,

f,t)y=Dif(t, t)+ Daf(t, 1) (1.20)

d z 2 3 x 2
dx/ dte™ ™" = e * —/ dt t2e~ (1.21)
0 0

The resulting integral in this example is related to an error function, see problem 1.13, so it's not as bad as it looks.
Another example,

d d
%xzle'x_l+%kx atk:f])
d
— gt + %exlnk S _'_lnkexlnk

=2+ 2% Inx

1.6 Integrals
What is an integral? You've been using them for some time. I've been using the concept in this introductory chapter as
if it's something that everyone knows. But what is it?

If your answer is something like “the function whose derivative is the given function” or “the area under a curve”
then No. Both of these answers express an aspect of the subject but neither is a complete answer. The first actually
refers to the fundamental theorem of calculus, and I'll describe that shortly. The second is a good picture that applies to
some special cases, but it won't tell you how to compute it and it won't allow you to generalize the idea to the many
other subjects in which it is needed. There are several different definitions of the integral, and every one of them requires
more than a few lines to explain. I'll use the most common definition, the Riemann Integral.
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An integral is a sum, obeying all the usual rules of addition and multiplication, such as 1+2+3+4 = (14+2)+(3+4)
or5-(647) = (5-6)+(5- 7). When you've read this section, come back and translate these bits of arithmetic into statements
about integrals.

A standard way to picture the definition is to try to find the area under a curve. You can get successively better
and better approximations to the answer by dividing the area into smaller and smaller rectangles — ideally, taking the
limit as the number of rectangles goes to infinity.

To codify this idea takes a sequence of steps:

1. Pick an integer N > 0. This is the number of subintervals into which the whole interval between a and b is to be

divided. : : :
1 2 N
!\[: ‘/ ————t— :‘/Ib
a
1/1& ‘\xz

2. Pick N — 1 points between a and b. Call them x1, x9, etc.

=20 <T1 <2< --<xTNy_1<TN=0D

and for convenience label the endpoints as xg and x . For the sketch , N = 8.
3. Let A:z:k =T — Tp_1- That is,
Axri =21 — X0, Axy =19 — T1,- -

4. In each of the N subintervals, pick one point at which the function will be evaluated. I'll label these points by the
Greek letter €. (That's the Greek version of “x.")

Tpoy <& <1y
xo <& <y, 1 <& <9,

5. Form the sum that is an approximation to the final answer.
f(&)Azy + f(&2)Az2 + f(&3)Azs + - -

6. Finally, take the limit as all the Ax;. — 0 and necessarily then, as N — oo. These six steps form the definition

N b
limOZf(fk)Aask:/ () do (1.22)
k=1 @

Az —
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1/x
</

1 2

To demonstrate this numerically, pick a function and do the first five steps explicitly. Pick f(x) = 1/x and
integrate it from 1 to 2. The exact answer is the natural log of 2: In2 = 0.69315. ..
(1) Take N = 4 for the number of intervals
(2) Choose to divide the distance from 1 to 2 evenly, at 7 = 1.25, 29 = 1.5, 23 = 1.75

a=20=1.<125<15<1.75<2. =24=5

(3) All the Ax's are equal to 0.25.
(4) Choose the midpoint of each subinterval. This is the best choice when you use a finite number of divisions without
taking the limit.

£§1=1125 & =1375 & =1625 & =1.875

(5) The sum approximating the integral is then

J(€)Azr + f(&)Are + f(§&3)Ars + [f(&)Ary =
X .25 = .69122

1 1 1
—— X .20+ ——— X .20 + —— X .25
1125 T 137 0 T 1es X0 T 1818
For such a small number of divisions, this is a very good approximation — about 0.3% error. (What do you get
if you take N =1 or N =2 or N = 10 divisions?)

Fundamental Thm. of Calculus

If the function that you're integrating is complicated or if the function is itself not known to perfect accuracy then a
numerical approximation just like this one for ff dx/x is often the best way to go. How can a function not be known
completely? If it is experimental data. When you have to resort to this arithmetic way to do integrals, are there more
efficient ways to do it than simply using the definition of the integral? Yes. That's part of the subject of numerical
analysis, and there's a short introduction to the subject in chapter 11, section 11.4.
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The fundamental theorem of calculus unites the subjects of differentiation and integration. The integral is defined
as the limit of a sum, and the derivative is defined as the limit of a quotient of two differences. The relation between
them is

IF f has an integral from a to b, that is, if ff f(x) dx exists,

AND IF f has an anti-derivative, that is, there is a function F' such that dF'/dx = f,

THEN

/bf(x) dz = F(b) - F(a) (1.23)

Are there cases where one of these exists without the other? Yes, though I'll admit that you are not likely to
come across such functions without hunting through some advanced math books. Check out www.wikipedia.org for
Volterra's function to see what it involves.

Notice an important result that follows from Eq. (1.23). Differentiate both sides with respect to b

b
o | = GF® = f0) (1.24)

and with respect to a
= / fla)yde =~ F(a) = ~ f(a) (1.2

Differentiating an integral with respect to one or the other of its limits results in plus or minus the integrand. Combine
this with the chain rule and you can do such calculations as

d sinx 9 sinx 9
da:/ e dt = e cosx — 772 +/ t2e* dt (1.26)
x2

All this requires is that you differentiate every x that is present and add the results, just as

de— dm x—dxx—l—xdx_l r4r-1=2x

dr” — dw Cdx dr N
You may well ask why anyone would want to do such a thing as Eq. (1.26), but there are more reasonable examples that
show up in real situations. I've already used this result in Eq. (1.21).

Riemann-Stieltjes Integrals
Are there other useful definitions of the word integral? Yes, there are many, named after various people who developed


http://www.wikipedia.org
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them, with Lebesgue being the most famous. His definition* is most useful in much more advanced mathematical
contexts, and | won't go into it here, except to say that very roughly where Riemann divided the z-axis into intervals
Ax;, Lebesgue divided the y-axis into intervals Ay;. Doesn't sound like much of a change does it? It is. There is
another definition that is worth knowing about, not because it helps you to do integrals, but because it unites a couple
of different types of computation into one. This is the Riemann-Stieltjes integral. You won't need it for any of the later
work in this book, but it is a fairly simple extension of the Riemann integral and I'm introducing it mostly for its cultural
value — to show you that there are other ways to define an integral. If you take the time to understand it, you will be
able to look back at some subjects that you already know and to realize that they can be manipulated in a more compact
form (e.g. center of mass).
When you try to evaluate the moment of inertia you are doing the integral

/7"2 dm

When you evaluate the position of the center of mass even in one dimension the integral is

1
M/xdm

and even though you may not yet have encountered this, the electric dipole moment is

/ 7dq

How do you integrate x with respect to ? What exactly are you doing? A possible answer is that you can express this
integral in terms of the linear density function and then dm = A(z)dz. But if the masses are a mixture of continuous
densities and point masses, this starts to become awkward. Is there a better way?

Yes

On the interval @ < x < b assume there are two functions, f and «. Don't assume that either of them must be
continuous, though they can't be too badly behaved or nothing will converge. This starts the same way the Riemann
integral does: partition the interval into a finite number (V) of sub-intervals at the points

a=x9<r1<T2<...<TN=D (1.27)

* One of the more notable PhD theses in history
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Form the sum

N
Z f(xh) Aoy, where  xp_ <) <) and Aoy, = a(xy) — a(xg_q) (1.28)
k=1

To improve the sum, keep adding more and more points to the partition so that in the limit all the intervals z, —x;._; — 0.
This limit is called the Riemann-Stieltjes integral,

/fda (1.29)

What's the big deal? Doesn't dav = o/dx? Use that and you have just the ordinary integral

/f(x)o/(:c) dx?

Sometimes you can, but what if o isn't differentiable? Suppose that it has a step or several steps? The derivative isn't
defined, but this Riemann-Stieltjes integral still makes perfectly good sense.

An example. A very thin rod of length L is placed on the z-axis with one end at the origin. It has a uniform
linear mass density A and an added point mass mg at © = 3L/4. (a piece of chewing gum?) Let m(z) be the function
defined as

m(z) = (the amount of mass at coordinates < x)
Py (0 <z <3L/4)
- {)\x—l—mo (BL/4<x <L)

This is of course discontinuous.
m(z)

o | ~
The coordinate of the center of mass is f:rdm/fdm. The total mass in the denominator is mg + AL, and I'll

go through the details to evaluate the numerator, attempting to solidify the ideas that form this integral. Suppose you
divide the length L into 10 equal pieces, then

- B [ AL/10 (k #38)
vg = kL/10, (k=0,1,...,10)  and Amk_{AL/lOero (k=38)
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Amg = m(xs) — m(x7) = (Axg +mo) — Ax7 = AL/10 + my.
Choose the positions x’k anywhere in the interval, for no particular reason I'll take the right-hand endpoint,
x), = kL/10. The approximation to the integral is now

10 7 10
> apAmy = 2 AL/10 + 35(AL/10 4+ mo) + > 2 AL/10
k=1 k=1 k=9

10

= Zx}c)\L/lo + xgmo
k=1

As you add division points (more intervals) to the whole length this sum obviously separates into two parts. One is the
ordinary integral and the other is the discrete term from the point mass.

L
/ eAdz +mo3L /4 = L2 /2 + mo3L /4
0

The center of mass is then at
_ AL?/2+mo3L /4
N mo + AL

xcm

If mo < AL, this is approximately L/2. In the reverse case is is approximately 3L/4. Both are just what you should
expect.

The discontinuity in m(z) simply gives you a discrete added term in the overall result.

Did you need the Stieltjes integral to do this? Probably not. You would likely have simply added the two terms
from the two parts of the mass and gotten the same result as with this more complicated method. The point of this
is not that it provides an easier way to do computations. It doesn’'t. It is however a unifying notation and language
that lets you avoid writing down a lot of special cases. (Is it discrete? Is it continuous?) You can even write sums as
integrals: Let « be a set of steps:

0 T <1
1 1<z <2
2

= >
o< <3 [x] forx >0
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Where that last bracketed symbol means “greatest integer less than or equal to x." It's a notation more common in
mathematics than in physics. Now in this notation the sum can be written as a Stieltjes integral.

[rda=[" rd=Y" k) (1.30
= k=1

At every integer, where [x] makes a jump by one, there is a contribution to the Riemann-Stieltjes sum, Eq. (1.28). That
makes this integral just another way to write the sum over integers. This won't help you to sum the series, but it is
another way to look at the subject.

The method of integration by parts works perfectly well here, though as with all the rest of this material I'll leave
the proof to advanced calculus texts. If [ f do exists then so does [ df and

/fda:fa—/adf (1.31)

This relates one Stieltjes integral to another one, and because you can express summation as an integral now, you can
even do summation by parts on the equation (1.30). That's something that you are not likely to think of if you restrict
yourself to the more elementary notation, and it's even occasionally useful.

1.7 Polar Coordinates

When you compute an integral in the plane, you need the element of area appropriate to the coordinate system that
you're using. In the most common case, that of rectangular coordinates, you find the element of area by drawing the
two lines at constant coordinates  and x + dz. Then you draw the two lines at constant coordinates y and y + dy.
The little rectangle that they circumscribe has an area dA = dx dy.

¢+ do
y+dy ¢
Yy
, r+dr
T x4+ dx

In polar coordinates you do exactly the same thing! The coordinates are r and ¢, and the line at constant radius
r and at constant r + dr define two neighboring circles. The lines at constant angle ¢ and at constant angle ¢ + d¢



1—Basic Stuff 19

form two closely spaced rays from the origin. These four lines circumscribe a tiny area that is, for small enough dr and
d¢, a rectangle. You then know its area is the product of its two sides*: dA = (dr)(r d¢). This is the basic element of
area for polar coordinates.

The area of a circle is the sum of all the pieces of area within it

R 27
/dA:/ rdr [ dé
0 0

| find it more useful to write double integrals in this way, so that the limits of integration are next to the differential. The
other notation can put the differential a long distance from where you show the limits of integration. | get less confused
my way. In either case, and to no one's surprise, you get

R 2m R
/ rdr/ dgf):/ rdr2m =27R*/2 = 1 R?
0 0 0

For the preceding example you can do the double integral in either order with no special care. If the area over
which you're integrating is more complicated you will have to look more closely at the limits of integration. I'll illustrate
with an example of this in rectangular coordinates: the area of a triangle. Take the triangle to have vertices (0, 0), (a,0),
and (0,0). The area is

a bla—x)/a b a(b—y)/b
b /dA:/ dm/ dy  or / dy/ dz (1.32)
a 0 0 0 0

They should both yield ab/2. See problem 1.25.

1.8 Sketching Graphs
How do you sketch the graph of a function? This is one of the most important tools you can use to understand the
behavior of functions, and unless you practice it you will find yourself at a loss in anticipating the outcome of many
calculations. There are a handful of rules that you can follow to do this and you will find that it's not as painful as you
may think.

You are confronted with a function and have to sketch its graph.

* If you're tempted to say that the area is dA = dr d¢, look at the dimensions. This expression is a length, not an
area.
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1. What is the domain? That is, what is the set of values of the independent variable that you need to be
concerned with? Is it —oo to +oc orisit 0 <z < L orisit —m < ¢ < m or what?

2. Plot any obvious points. If you can immediately see the value of the function at one or more points, do them
right away.

3. Is the function even or odd? If the behavior of the function is the same on the left as it is on the right (or
perhaps inverted on the left) then you have half as much work to do. Concentrate on one side and you can then make
a mirror image on the left if it is even or an upside-down mirror image if it's odd.

4. Is the function singular anywhere? Does it go to infinity at some point where the denominator vanishes? Note
these points on the axis for future examination.

5. What is the behavior of the function near any of the obvious points that you plotted? Does it behave like 7
Like 22?7 If you concluded that it is even, then the slope is either zero or there's a kink in the curve, such as with the
absolute value function, |z|.

6. At one of the singular points that you found, how does it behave as you approach the point from the right?
From the left? Does the function go toward +o0o or toward —oo in each case?

7. How does the function behave as you approach the ends of the domain? If the domain extends from —oc to
400, how does the function behave as you approach these regions?

8. Is the function the sum or difference of two other much simpler functions? If so, you may find it easier to
sketch the two functions and then graphically add or subtract them. Similarly if it is a product.

9. Is the function related to another by translation? The function f(z) = (x — 2)? is related to x? by translation
of 2 units. Note that it is translated to the right from x2. You can see why because (z — 2)? vanishes at = = +2.

10. After all this, you will have a good idea of the shape of the function, so you can interpolate the behavior
between the points that you've found.

Example: sketch f(z) = x/(a® — x?).

1. The domain for independent variable wasn’t given, so take it to be —co < x < o0

2. The point = 0 obviously gives the value f(0) = 0.

4. The denominator becomes zero at the two points x = +a.

3. If you replace x by —x, the denominator is unchanged, and the numerator changes sign. The function is odd
about zero.
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| |
| |
—a a -

7. When z becomes very large (|| > a), the denominator is mostly —x2, so f(x) behaves like z/(—2?%) = —1/x
for large x. It approaches zero for large z. Moreover, when x is positive, it approaches zero through negative values and
when x is negative, it goes to zero through positive values.

—_—

————
—a a
5. Near the point x = 0, the 22 in the denominator is much smaller than the constant a? (72 < a?). That means
that near this point, the function f behaves like z:/a?

.

[

6. Go back to the places that it blows up, and ask what happens near there. If x is a little greater than a, the
22 in the denominator is a little larger than the a? in the denominator. This means that the denominator is negative.
When x is a little less than a, the reverse is true. Near x = a, The numerator is close to a. Combine these, and you see
that the function approaches —oo as & — a from the right. It approaches +oc on the left side of a. I've already noted
that the function is odd, so don’t repeat the analysis near x = —a, just turn this behavior upside down.

With all of these pieces of the graph, you can now interpolate to see the whole picture.

OR, if you're clever with partial fractions, you might realize that you can rearrange f as

r __ 12 -1)2
a2—2x2 x—a xT+a’
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and then follow the ideas of techniques 8 and 9 to sketch the graph. It's not obvious that this is any easier; it's just
different.

Exercises
1 Express €* in terms of hyperbolic functions.
2 If sinhz = 4/3, what is coshz? What is tanh x?
3 If tanhz = 5/13, what is sinh 7 What is cosh z?

4 Let n and m be positive integers. Let a = n? —m?, b= 2nm, c = n?+m?. Show that a-b-c form the integer sides

of a right triangle. What are the first three independent “Pythagorean triples?’ By that | mean ones that aren't just a
multiple of one of the others.

5 Evaluate the integral foa dx x? cosx. Use parametric differentiation starting with cos ax.
6 Evaluate [;' dz xsinhx by parametric differentiation.

7 Differentiate ze” sin x cosh x with respect to .

8 Differentiate [* df sin(xt) with respect to .

9 Differentiate fj; dt e==t* with respect to .

10 Differentiate fj: dt sin(xt3) with respect to .

11 Differentiate fom dt =% Jo(Bt) with respect to x. Jy is a Bessel function.

12 Sketch the function y = vt — gt?/2. (First step: set all constants to one. vy = g = 2 = 1. Except exponents)
13 Sketch the function U = —mgy + ky?/2. (Again: set the constant factors to one.)

14 Sketch U = mgl(1 — cos ).

15 Sketch V = —Vpe 2/,
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16 Sketch x = xpe~* sinwt.
17 Is it all right in Eq. (1.22) to replace “"Axj — 0" with “N — c0?" [No.]

18 Draw a graph of the curve parametrized as © = cosf, y = sin 6.
Draw a graph of the curve parametrized as = cosh ), y = sinh 6.

19 What is the integral [° dze=2"7

20 Given that [*° dz/(14?) =, i.e. you don't have to derive this, what then is [*°_dz/(a+x?)? Now differentiate
the result and find the two integrals [*_dx/(1+ 2%)% and [ dx /(1 + 22)3.

21 Derive the product rule as a special case of Eq. (1.20).

22 The third paragraph of section 1.6 has two simple equations in arithmetic. What common identities about the
integral do these correspond to?

23 Plot a graph of y = e* with y and = in meters (z horizontal and ¥y vertical). Start at the origin and walk along the
T-axis at one meter per second. When you are at the 20-meter point, where is the y coordinate and how fast is it rising?
Not just numbers: compare both to real things.
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Problems
1.1 What is the tangent of an angle in terms of its sine? Draw a triangle and do this in one line.

1.2 Derive the identities for cosh? § — sinh? § and for 1 — tanh? §, Equation (1.3).

1.3 Derive the expressions in Eq. (1.4) for cosh™! %, tanh™! %, and coth™ 4. Pay particular attention to the domains
and explain why these are valid for the set of ¥ that you claim. What is sinh ™! () + sinh ™! (—y)?

1.4 The inverse function has a graph that is the mirror image of the original function in the 45° line ¥y = x. Draw the
graphs of all six of the hyperbolic functions and all six of the inverse hyperbolic functions, comparing the graphs you
should get to the functions derived in the preceding problem.

1.5 Evaluate the derivatives of cosh z, tanh x, and coth x.
1.6 What are the derivatives, dsinh™* y/dy and dcosh™! y/dy?

1.7 Find formulas for sinh 2y and cosh 2y in terms of hyperbolic functions of 4. The first one of these should take just
a couple of lines. Maybe the second one too, so if you find yourself filling a page, start over.

1.8 Do a substitution to evaluate the integral (a) simply. Now do the same for (b)

1.9 Sketch the two integrands in the preceding problem. For the second integral, if the limits are 0 and z with z > a,
then before having done the integral, estimate approximately what the value of this integral should be. (Say z = 10%a
or z = 10%0a.) Compare your estimate to the exact answer that you just found to see if they match in any way.

1.10 Fill in the steps in the derivation of the Gaussian integrals, Egs. (1.7), (1.8), and (1.10). In particular, draw graphs
of the integrands to show why Eq. (1.7) is so.

1.11 What is the integral ffooo dttre=t ifn = —1orn = —2? [Careful!, no conclusion-jumping allowed.] Did you
draw a graph? No? Then that's why you're having trouble with this.
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1.12 Sketch a graph of the error function. In particular, what is its behavior for small = and for large z, both positive
. . . 2

and negative? Note: “small’ doesn't mean zero. First draw a sketch of the integrand e~*" and from that you can

(graphically) estimate erf(x) for small z. Compare this to the short table in Eq. (1.11).

1.13 Put a parameter «v into the defining integral for the error function, Eq. (1.11), so it has f dt e Differentiate
this integral with respect to c. Next, change variables in this same integral from ¢ to u: u? = at?, and differentiate
that integral (which of course has the same value as before) with respect to alpha to show

/ dt 26" ﬁerf( )—%xe‘x2

As a check, does this agree with the previous result for x = oo, Eq. (1.10)?

1.14 Use parametric differentiation to derive the recursion relation xI'(z) = I'(x + 1). Do it once by inserting a
parameter in the integral for I, e~ — e~®!, and differentiating. Then change variables before differentiating and equate
the results.

1.15 What is the Gamma function of x = —1/2, —3/2, —5/2? Explain why the original definition of T in terms of

the integral won't work here. Demonstrate why Eq. (1.12) converges for all x > 0 but does not converge for = < 0.
Ans: T'(=5/2) = —8y/7/15

1.16 What is the Gamma function for x near 17 near 07 near —1? —27 —37 Now sketch a graph of the Gamma function
from —3 through positive values. Try using the recursion relation of problem 1.14. Ans: Near —3, I'(z —1/( (z+3) )

1.17 Show how to express the integral for arbitrary positive x

o0 2
/ dt et
0

in terms of the Gamma function. Is positive x the best constraint here or can you do a touch better?
Ans: 3T((xz +1)/2)

1.18 The derivative of the Gamma function at z = 1is /(1) = —0.5772 = —~. The number y is called Euler’s constant,
and like 7 or e it's another number that simply shows up regularly. What is T(2)? What is I(3)? Ans: I'(3) = 3 — 2y
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1.19 Show that
T(n+ 1) = \2/5(271 — 1)

The “double factorial” symbol mean the product of every other integer up to the given one. E.g. 5!! = 15. The double
factorial of an even integer can be expressed in terms of the single factorial. Do so. What about odd integers?

(e}
1.20 Evaluate this integral. Just find the right substitution. / dte " (a > 0)
0

1.21 A triangle has sides a, b, ¢, and the angle opposite ¢ is 7. Express the area of the triangle in terms of a, b, and
~v. Write the law of cosines for this triangle and then use sin®~y + cos? ¥ = 1 to express the area of a triangle solely in
terms of the lengths of its three sides. The resulting formula is not especially pretty or even clearly symmetrical in the
sides, but if you introduce the semiperimeter, s = (a + b+ ¢)/2, you can rearrange the answer into a neat, symmetrical
form. Check its validity in a couple of special cases. Ans: \/s(s — a)(s — b)(s — ¢) (Hero's formula)

1.22 An arbitrary linear combination of the sine and cosine, Asin@ + B cos#, is a phase-shifted cosine: C'cos(6 + 9).
Solve for C' and 0 in terms of A and B, deriving an identity in 6.

1.23 Solve the two simultaneous linear equations
ar + by = e, cr+dy=f

and do it solely by elementary manipulation (4, —, x, =), not by any special formulas. Analyze all the qualitatively
different cases and draw graphs to describe each. In every case, how many if any solutions are there? Because of
its special importance later, look at the case ¢ = f = 0 and analyze it as if it's a separate problem. You should be
able to discern and to classify the circumstances under which there is one solution, no solution, or many solutions.
Ans: Sometimes a unique solution. Sometimes no solution. Sometimes many solutions. Draw two lines in the plane;
how many qualitatively different pictures are there?

1.24 Use parametric differentiation to evaluate the integral [ z?sinx dzx. Find a table of integrals if you want to verify
your work.

1.25 Derive all the limits on the integrals in Eq. (1.32) and then do the integrals.

1.26 Compute the area of a circle using rectangular coordinates,
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1.27 (a) Compute the area of a triangle using rectangular coordinates, so dA = dx dy. Make it a right triangle with
vertices at (0,0), (a,0), and (a,b). (b) Do it again, but reversing the order of integration. (c) Now compute the area of
this triangle using polar coordinates. Examine this carefully to see which order of integration makes the problem easier.

1.28 Start from the definition of a derivative, lim (f(x + Az) — f(z))/Ax, and derive the chain rule.

d dg dh
f@) = glhiw) = 5 = B

Now pick special, fairly simple cases for g and h to test whether your result really works. That is, choose functions so
that you can do the differentiation explicitly and compare the results, but also functions with enough structure that they
aren't trivial.

1.29 Starting from the definitions, derive how to do the derivative,

d (@
pl /0 gty dt

Now pick special, fairly simple cases for f and g to test whether your result really works. That is, choose functions so
that you can do the integration and differentiation explicitly, but ones such the result isn't trivial.

1.30 Sketch these graphs, working by hand only, no computers:

x x2 x r—a x x

- 7_’_7
a? + a2’ a? — x?’ ad+ x3’ a?— (v —a)?’ L2 —22 L

1.31 Sketch by hand only, graphs of

sinx (=31 < x < +4m), (=31 < x < +4m), sin(x — m/2) (=37 < x < +4m)

simmax

1.32 Sketch by hand only, graphs of

1 . ¢
f(¢):1+5sm2¢(0§¢§27r)’ f(¢):{¢_27r (m < ¢ < 2m)
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_[a? (0<z<a) _[Kr/R® (0<r<R)
f(x)_{(xx—2a)2 (agﬁgga)’ f(r)_{Kq/nr2 (R<rr<oo)

1.33 From the definition of the Riemann integral make a numerical calculation of the integral

1
4

| da

0 1+ a2

Use 1 interval, then 2 intervals, then 4 intervals. If you choose to write your own computer program for an arbitrary
number of intervals, by all means do so. As with the example in the text, choose the midpoints of the intervals to
evaluate the function. To check your answer, do a trig substitution and evaluate the integral exactly. What is the %
error from the exact answer in each case? [100x(wrong — right)/right] Ans: 7

1.34 Evaluate erf(1) numerically. Use 4 intervals. Ans: 0.842700792949715 (more or less)
1.35 Evaluate [ dz sinz/x numerically. Ans: 1.85193705198247 or so.

1.36 = and y are related by the equation 23 — 4xy + 3y> = 0. You can easily check that (x,y) = (1,1) satisfies it,
now what is dy/dz at that point? Unless you choose to look up and plug in to the cubic formula, | suggest that you
differentiate the whole equation with respect to = and solve for dy/dz.

Generalize this to finding dy/dx if f(x,y) =0. Ans: 1/5

1.37 When flipping a coin N times, what fraction of the time will the number of heads in the run lie between (N/2 —
24/N/2) and (N/2+2,/N/2)? What are these numbers for N = 1000? Ans: 99.5%

1.38 For N = 4 flips of a coin, count the number of times you get 0, 1, 2, etc. heads out of 2* = 16 cases. Compare
these results to the exponential approximation of Eq. (1.17).
Ans: 2 — 0.375 and 0.399

1.39 Is the integral of Eq. (1.17) over all § equal to one?

1.40 If there are 100 molecules of a gas bouncing around in a room, about how long will you have to wait to find that
all of them are in the left half of the room? Assume that you make a new observation every microsecond and that the
observations are independent of each other. Ans: A million times the age of the universe. [Care to try 10?3 molecules?]

1.41 If you flip 1000 coins 1000 times, about how many times will you get exactly 500 heads and 500 tails? What if
it's 100 coins and 100 trials, getting 50 heads? Ans: 25, 8
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1.42 (a) Use parametric differentiation to evaluate [z dx. Start with [ e®*dz. Differentiate and then let @ — 0.
(b) Now that the problem has blown up in your face, change the integral from an indefinite to a definite integral such

as ff and do it again. There are easier ways to do this integral, but the point is that this method is really designed for
definite integrals. It may not work on indefinite ones.

1.43 The Gamma function satisfies the identity
[(z)[(1—z)=7/sin7mx
What does this tell you about the Gamma function of 1/2? What does it tell you about its behavior near the negative

integers? Compare this result to that of problem 1.16.

1.44 Start from the definition of a derivative, manipulate some terms: (a) derive the rule for differentiating the function
h, where h(z) = f(x)g(x) is the product of two other functions.
(b) Integrate the resulting equation with respect to x and derive the formula for integration by parts.

1.45 Show that in polar coordinates the equation r = 2acos ¢ is a circle. Now compute its area in this coordinate
system.

1.46 The cycloid* has the parametric equations © = afl — asinf, and y = a — acosf. Compute the area, [ydx

between one arc of this curve and the x-axis. Ans: 3ma?

1.47 An alternate approach to the problem 1.13: Change variables in the integral definition of erf to ¢ = au. Now
differentiate with respect to o and of course the derivative must be zero and there’s your answer. Do the same thing
for problem 1.14 and the Gamma function.

1.48 Recall section 1.5 and compute this second derivative to show

2 t
22 /O dt' (t — )P (1) = F(1)

1.49 From the definition of a derivative show that

QU
5]

_ df/ds

If == f(0) and  t=g(0) then ar = dg/dd

* www-groups.dcs.st-and.ac.uk/~history /Curves/Cycloid.html


http://www-groups.dcs.st-and.ac.uk/~history/Curves/Cycloid.html
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Make up a couple of functions that let you test this explicitly.

1.50 Redo problem 1.6 another way: z = sinh ™!y <> y = sinhx. Differentiate the second of these with respect to ¥
and solve for dz/dy. Ans: dsinh™y/dy = 1//1 + y2.



Inﬁnite Series

Infinite series are among the most powerful and useful tools that you've encountered in your introductory calculus course.
It's easy to get the impression that they are simply a clever exercise in manipulating limits and in studying convergence,
but they are among the majors tools used in analyzing differential equations, in developing methods of numerical analysis,
in defining new functions, in estimating the behavior of functions, and more.

2.1 The Basics
There are a handful of infinite series that you should memorize and should know just as well as you do the multiplication
table. The first of these is the geometric series,

o
1
1+95+:z:2+953+954+---:Zyz:”:ﬂ for |z| < 1. (2.1)

It's very easy derive because in this case you can sum the finite form of the series and then take a limit. Write the series
out to the term = and multiply it by (1 — ).

(1+x+x2+x3+-~-+xN)(1—a:):
Qt+z+2?+23 4 raN)—(@+2?+ 23 42t 4 b2V =1 - VH (2.2)

If || < 1 then as N — oo this last term, 2N+, goes to zero and you have the answer. If z is outside this domain the

terms of the infinite series don’t even go to zero, so there's no chance for the series to converge to anything.
The finite sum up to 2% is useful on its own. For example it's what you use to compute the payments on a loan
that's been made at some specified interest rate. You use it to find the pattern of light from a diffraction grating.

N+1

1 -z
x" 2.3
Z 4 (2.3)
Some other common series that you need to know are power series for elementary functions:
T _ 1 x? T
=14+ j + - = EO F

31
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23 s a2k
smx—x—g—i— :20:(—1) 2E+ 1)
22 o0 . a2k
cosx—l—g—i- ZZ(— ) 2k
0
a? @ S her 2
In(l4a) =2 -+ 5 = => (-1) - (=< (2.4)
1
— 1)z? > 1) (a—k+1
(1+x)a:1+ozx+om2!)x+-~ :Za(a ) k!(a - )xk (lz] <1)

Of course, even better than memorizing them is to understand their derivations so well that you can derive them
as fast as you can write them down. For example, the cosine is the derivative of the sine, so if you know the latter series
all you have to do is to differentiate it term by term to get the cosine series. The logarithm of (1 + x) is an integral
of 1/(1 + z) so you can get its series from that of the geometric series. The geometric series is a special case of the
binomial series for & = —1, but it's easier to remember the simple case separately. You can express all of them as special
cases of the general Taylor series.

What is the sine of 0.1 radians? Just use the series for the sine and you have the answer, 0.1, or to more accuracy,
0.1 —0.001/6 = 0.099833

What is the square root of 1.17 \/T =(1+.1)2=1+1-01=105

What is 1/1.97 1/(2—.1) =1/[2(1—.05)] = %(1 +.05) = .5—1—.025 = .525 from the first terms of the geometric
series.

What is /10247 /1024 = /1000 + 24 = {’/1()00(1 +24/1000) =
10(1 + 24/1000)'/3 = 10(1 + 8/1000) = 10.08

As you see from the last two examples you have to cast the problem into a form fitting the expansion that you
know. When you want to use the binomial series, rearrange and factor your expression so that you have

(1 + something small)a

2.2 Deriving Taylor Series
How do you derive these series? The simplest way to get any of them is to assume that such a series exists and then to
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deduce its coefficients in sequence. Take the sine for example, assume that you can write
sine = A+ Bx + Ca? + D2® + Ex* + - -
Evaluate this at z = 0 to get
sin0=0=A+ B0+ C0*+D0* + E0* +--- = A
so the first term, A = 0. Now differentiate the series, getting
cost = B+ 20 + 3Dx? + 4F23 + - -
Again set * = 0 and all the terms on the right except the first one vanish.
cos0=1=B+2C0+3D0*+4E0° +---=B

Keep repeating this process, evaluating in turn all the coefficients of the assumed series.

sinex = A+ Br+ Cx?>+ Da® + Ex* + - - sin0=0=A
cosx = B+ 20z + 3Dx? + 4Ex3 + - - cos0=1=18
—sinx = 2C + 6Dz + 12E2? + - - —sin0=0=2C
—cosx = 6D + 24Fx 4+ 60F 2 + - - - —cos0=-1=6D
sine = 24F +120Fx + - -- sin0=0=24F
cosx = 120F + - -- cos0=1=120F

This shows the terms of the series for the sine as in Eq. (2.4).

Does this show that the series converges? If it converges does it show that it converges to the sine? No to both.
Each statement requires more work, and I'll leave the second one to advanced calculus books. Even better, when you
understand the subject of complex variables, these questions about series become much easier to understand.

The generalization to any function is obvious. You match the coefficients in the assumed expansion, and get

2 3 4
J(@) = F(0)+2f'(0) + 5 f(0) + S (0) + T /"(0) + -
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You don't have to do the expansion about the point zero. Do it about another point instead.

(t —to)*

F(&) = f(to) + (t = t0) f'(to) + == f"(to) + - - (2.5)

What good are infinite series?
This is sometimes the way that a new function is introduced and developed, typically by determining a series solution to
a new differential equation. (Chapter 4)
This is a tool for the numerical evaluation of functions.
This is an essential tool to understand and invent numerical algorithms for integration, differentiation, interpolation, and
many other common numerical methods. (Chapter 11)
To understand the behavior of complex-valued functions of a complex variable you will need to understand these series
for the case that the variable is a complex number. (Chapter 14)

All the series that |'ve written above are power series (Taylor series), but there are many other possibilities.

(=3 (26)
1
2=[; 4500— Seos (MY (-L<a<I) (2.7)

& I

1

The first is a Dirichlet series defining the Riemann zeta function, a function that appears in statistical mechanics among
other places.
The second is an example of a Fourier series. See chapter five for more of these.
Still another type of series is the Frobenius series, useful in solving differential equations: its form is ), akw’”s. The
number s need not be either positive or an integer. Chapter four has many examples of this form.

There are a few technical details about infinite series that you have to go through. In introductory calculus courses
there can be a tendency to let these few details overwhelm the subject so that you are left with the impression that
that’s all there is, not realizing that this stuff is useful. Still, you do need to understand it.*

* For animations showing how fast some of these power series converge, check out
www.physics.miami.edu/nearing/mathmethods/power-animations.html


http://www.physics.miami.edu/nearing/mathmethods/power-animations.html
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2.3 Convergence
Does an infinite series converge? Does the limit as N — oo of the sum, Z{V ug, exist? There are a few common and
useful ways to answer this. The first and really the foundation for the others is the comparison test.
Let u; and v}, be sequences of real numbers, positive at least after some value of k. Also assume that for all &
greater than some finite value, u; < vg. Also assume that the sum, )", v; does converge.
The other sum, Zk Uy, then converges too. This is almost obvious, but it's worth the little effort that a proof takes.
The required observation is that an increasing sequence of real numbers, bounded above, has a limit.
After some point, k = M, all the u;, and vy, are positive and uj, < vg. The sum a, = Y 3 V) then forms an
increasing sequence of real numbers, so by assumption this has a limit (the series converges). The sum by, = >, uy, is
an increasing sequence of real numbers also. Because uj, < v, you immediately have b, < a,, for all n.

b < an < lim ay,
n—oo

this simply says that the increasing sequence b, has an upper bound, so it has a limit and the theorem is proved.

Ratio Test

To apply this comparison test you need a stable of known convergent series. One that you do have is the geometric
series, > 1. xF for |z| < 1. Let this ¥ be the v}, of the comparison test. Assume at least after some point k = K that
all the ug. > 0.

Also that uy, < zuy.

Then up o < UK and U1 < TUK gives UK o < 22U

You see the immediate extension is
U n < T Uug

As long as & < 1 this is precisely set up for the comparison test using >, ux 2™ as the series that dominates the > uy.
This test, the ratio test is more commonly stated for positive ;. as

Uk 11
U

If for large k, <zr<l1 then the series Zuk, converges (2.8)

This is one of the more commonly used convergence tests, not because it's the best, but because it's simple and it works
a lot of the time.
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Integral Test

The integral test is another way to check for convergence or divergence. If f is a decreasing positive function and you
want to determine the convergence of Y, f(n), you can look at the integral [°°dx f(x) and check it for convergence.
The series and the integral converge or diverge together.

fa
b

2)
Hi f@)

1 2 3 4 5

From the graph you see that the function f lies between the tops of the upper and the lower rectangles. The
area under the curve of f between n and n + 1 lies between the areas of the two rectangles. That's the reason for the
assumption that f is decreasing and positive.

n+1
f(n)-1>/ de f(z)> f(n+1)-1

n

Add these inequalities from n = k to n = oo and you get

R+ k1) + /k /:“ = [ars

> flk+1D)+fk+2)+--- > :dxf(x)>f--- (2.9)
+1

The only difference between the infinite series on the left and on the right is one term, so either everything converges or
everything diverges.

You can do better than this and use these inequalities to get a quick estimate of the sum of a series that would
be too tedious to sum by itself. For example

o0

1 11 X1
D= ltmtmtd s
4

1
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This last sum lies between two integrals.

/dx >Zn2 /dx (2.10)

that is, between 1/3 and 1/4. Now I'll estimate the whole sum by adding the first three terms explicitly and taking the
arithmetic average of these two bounds.

o

Z ~1+—+1 E 1+1 =1.653 (2.11)
- Fzta\3Ta) ‘

The exact sum is more nearly 1.644934066848226, but if you use brute-force addition of the original series to achieve
accuracy equivalent to this 1.653 estimation you will need to take about 120 terms. This series converges, but not very
fast. See also problem 2.24.

Quicker Comparison Test
There is another way to handle the comparison test that works very easily and quickly (if it's applicable). Look at the
terms of the series for large 1 and see what the approximate behavior of the nt" term is. That provides a comparison
series. This is better shown by an example:

i n®—2n+1/n

- 5n° +sinn

For large 1, the numerator is essentially % and the denominator is essentially 5n°, so for large n this series is approximately
like

>
5n?2
More precisely, the ratio of the nth term of this approximate series to that of the first series goes to one as n — co. This

comparison series converges, so the first one does too. If one of the two series diverges, then the other does too.
Apply the ratio test to the series for ev.

e k+1 !
& ) (T
Zm [kt so Uy, zk [ k! k+1

As k — oo this quotient approaches zero no matter the value of x. This means that the series converges for all .
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Absolute Convergence

If a series has terms of varying signs, that should help the convergence. A series is absolutely convergent if it converges
when you replace each term by its absolute value. If it's absolutely convergent then it will certainly be convergent when
you reinstate the signs. An example of a series that is convergent but not absolutely convergent is

= 1
Z(—l)lﬁ'll:1—7+1—...:1n(1—|—1):1n2 (2.12)
£ k 273

Change all the minus signs to plus and the series is divergent. (Use the integral test.)

Can you rearrange the terms of an infinite series? Sometimes yes and sometimes no. If a series is convergent but
not absolutely convergent, then each of the two series, the positive terms and the negative terms, is separately divergent.
In this case you can rearrange the terms of the series to converge to anything you want! Take the series above that
converges to In2. | want to rearrange the terms so that it converges to v/2. Easy. Just start adding the positive terms
until you've passed v/2. Stop and now start adding negative ones until you're below that point. Stop and start adding
positive terms again. Keep going and you can get to any number you want.

1 1 1 1 1 1 1 1

b oo oo — 4 — — et
t3ts gt tgrg T3 39

2.4 Series of Series

When you have a function whose power series you need, there are sometimes easier ways to the result than a straight-
forward attack. Not always, but you should look first. If you need the expansion of e +b ahout the origin you can do
a lot of derivatives, using the general form of the Taylor expansion. Or you can say

1 1
AT — 1 4 (aa? + br) + 5(ax” +br)* + =(ax® + br)’ + - - (2.13)

and if you need the individual terms, expand the powers of the binomials and collect like powers of x:
1+bx + (a+b*/2)2* + (ab+ b*/6)2® + - - -
If you're willing to settle for an expansion about another point, complete the square in the exponent

az?+bx a(x?+bz/a) a(x?+bx /a+b?/4a?)—b?/4a a(x+b/2a)?—b?/4a a(x+b/2a)2e—bz/4a

€ =€

= e Y11 4 a(x +b/2a)% + a?(x +b/2a)" /2 + -]

=e€ =€ =€
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and this is a power series expansion about the point 2o = —b/2a.
What is the power series expansion of the secant? You can go back to the general formulation and differentiate a
lot or you can use a combination of two known series, the cosine and the geometric series.

1 1 1

cosT 1—%x2+%x4+---_ 1—[g22— Szt 4]
2 3

N R

— [t gt ]+ et et P

=14 g52°+ (= +()*)at + -

=1+ 4%+ Zat 4+

secr =

(2.14)

This is a geometric series, each of whose terms is itself an infinite series. It still beats plugging into the general formula
for the Taylor series Eq. (2.5).
What is 1/ sin® 2:?

1 1 1
sin’ 7 (1 —23/30+ 25 /50 — - )° @31 —a2/3l+at/5 )’
1 1

= = —(1-32+62%2—...

TS )

1

= F(l —3(—2?/31 4 2 /5 — .. )+ 6(—2? /3 4 2t /5 — .. )2

U SO C

a3 2r 0 360

which is a Frobenius series.

2.5 Power series, two variables

The idea of a power series can be extended to more than one variable. One way to develop it is to use exactly the same
sort of brute-force approach that | used for the one-variable case. Assume that there is some sort of infinite series and
successively evaluate its terms.

flx,y) = A+ Bx+ Cy+ Da* + Exvy + Fy? + Ga® + Hx*y + Tz + Jy? - -
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Include all the possible linear, quadratic, cubic, and higher order combinations. Just as with the single variable, evaluate
it at the origin, the point (0,0).
f(0,0)=A+0+0+---

Now differentiate, but this time you have to do it twice, once with respect to x while y is held constant and once with
respect to y while x is held constant.

of _ of _
of _ of _
ay(x,y)—C+Ex+2Fy+--~ then ay(o,o)_C

Three more partial derivatives of these two equations gives the next terms.

0% f
w(w,y):QD—I—GGa:—FZHy---
2
aaxéfy(x,y) =FE+2Hx+2ly---
2
gyJ;(a:,y):QF—i—QI:c—i—GJy---

Evaluate these at the origin and you have the values of D, F, and F'. Keep going and you have all the coefficients.

This is awfully cumbersome, but mostly because the crude notation that I've used. You can make it look less
messy simply by choosing a more compact notation. If you do it neatly it's no harder to write the series as an expansion
about any point, not just the origin.

fla,y) =Y Amnlz—a)™(y-0)" (2.15)

m,n=0

Differentiate this m times with respect to x and n times with respect to y, then set x = a and y = b. Only one term
survives and that is

W(a, b) = m!In!Apmn
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| can use subscripts to denote differentiation so that % is fr and % is fexy. Then the two-variable Taylor
expansion is

P, 5) = FO)+F20) + fy 0+
o e (0)% + 20y Oy + Fy (0)7] +

% [Fraz(0)2° + 3 fray(0)2%Y + 3 fayy (0029 + Fuyy(0)%] + - -- (2.16)

Again put more order into the notation and rewrite the general form using A, as

1 (m+n)l\ o f
Ampn = b 2.17
T (m 4 n)! ( m!n! > dx™moy™ (a,5) (2.17)
That factor in parentheses is variously called the binomial coefficient or a combinatorial factor. Standard notations for
it are
m! m
= O, = 2.18
nl(m—n) ™" (n) (2.18)

The binomial series, Eq. (2.4), for the case of a positive integer exponent is

m
m
(14+2)"m = Z < >x”, or more symmetrically

n
n=0
(a+b)" = (™ npmTn (2.19)
0 g;<n>a

(a+b)* = a® + 2ab + V?, (a+0b)® = a® + 3a*b + 3ab® + b?,
(a+b)* = a* +4a®b + 6a*b* + 4ab® + b1, etc.

Its relation to combinatorial analysis is that if you ask how many different ways can you choose n objects from a collection
of m of them, ,,C}, is the answer.
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2.6 Stirling’s Approximation
The Gamma function for positive integers is a factorial. A clever use of infinite series and Gaussian integrals provides a
useful approximate value for the factorial of large n.

n

n! ~v2rnn"e” for large n (2.20)

Start from the Gamma function of n + 1.
nl=T(n+1)= / dtthe t = / dt e~ ttmnt
0 0

The integrand starts at zero, increases, and drops back down to zero as ¢ — oo. The graph roughly resembles a
Gaussian, and | can make this more precise by expanding the exponent around the point where it is a maximum. The
largest contribution to the whole integral comes from the region near this point. Differentiate the exponent to find the
maximum:

et

d n .
%(—t—i-nlnt):—l—i-?zo gives t=n
Expand about this point
f(t)=—t+nlnt= f(n) + (t—n)f'(n) + (t-n)2f"(n)/2 + -
=-n+nlnn + 0 + (t —n)?(—n/n?)/2 + -

Keep terms to the second order and the integral is approximately

n! ~ /oo dt e—n+nlnn—(t—n)2/2n — e /OO dt e—(t—n)2/2n (2‘21)
0 0
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At the lower limit of the integral, at ¢ = 0, this integrand is e /2 so if n is even moderately large then extending the

range of the integral to the whole line —co to +00 won't change the final answer much.
o0 2
n”e‘”/ dt e=(t=m?/2n _ pne=n,/omp
—0o0

where the final integral is just the simplest of the Gaussian integrals in Eq. (1.10).
To see how good this is, try a few numbers

n n! Stirling ratio difference
1 1 0.922 0.922 0.078
2 2 1.919 0.960 0.081
5 120 118.019 0.983 1.981
10 3628800 3598695.619 0.992 30104.381

You can see that the ratio of the exact to the approximate result is approaching one even though the difference is getting
very large. This is not a handicap, as there are many circumstances for which this is all you need. This derivation
assumed that n is large, but notice that the result is not too bad even for modest values. The error is less than 2%
for n = 5. There are even some applications, especially in statistical mechanics, in which you can make a still cruder
approximation and drop the factor v/27n. That is because in that context it is the logarithm of n! that appears, and
the ratio of the logarithms of the exact and even this cruder approximate number goes to one for large n. Try it.
Although I've talked about Stirling's approximation in terms of factorials, it started with the Gamma function, so
Eq. (2.20) works just as well for I'(n + 1) for any real n:
['(11.34 = 10.34 + 1) = 8116 833.918 and Stirling gives 8051 701.

Asymptotic

You may have noticed the symbol that | used in Egs. (2.20) and (2.21). “~" doesn't mean “approximately equal to”
or “about,” because as you see here the difference between n! and the Stirling approximation grows with n. That the
ratio goes to one is the important point here and it gets this special symbol, “asymptotic to.”

Probability Distribution

In section 1.4 the equation (1.17) describes the distribution of the results when you toss a coin. It's straight-forward to
derive this from Stirling's formula. In fact it is just as easy to do a version of it for which the coin is biased, or more
generally, for any case that one of the choices is more likely than the other.
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Suppose that the two choices will come up at random with fractions @ and b, where ¢ +b = 1. You can still
picture it as a coin toss, but using a very unfair coin. Perhaps a = 1/3 of the time it comes up tails and b = 2/3 of the
time it comes up heads. If you toss two coins, the possibilities are

TT HT TH HH
and the fractions of the time that you get each pair are respectively
a? ba ab b?

This says that the fraction of the time that you get no heads, one head, or two heads are
a’ = 1/, 2ab = 4o, b = 4 with total  (a +b)? = a® +2ab+ b* =1 (2.22)

Generalize this to the case where you throw N coins at a time and determine how often you expect to see 0, 1,
, N heads. Equation (2.19) says

N
N N N!
N ki N-k
(@+) _kz—0<k>ab where (k)_k!(N—k)!

When you make a trial in which you toss IV coins, you expect that the “a” choice will come up IV times only the fraction
N of the trials. All tails and no heads. Compare problem 2.27.
The problem is now to use Stirling’s formula to find an approximate result for the terms of this series. This is the
fraction of the trials in which you turn up k tails and N — k heads.

dpv-k N kpN—k V2rN NNe N
kNN — k)! Vork kke=k .\ /2n(N (N k)N —ke—(N—k)

_ kaN—k 1
=a”b \/ﬁ” N B Y (2.23)

The complicated parts to manipulate are the factors with all the exponentials of k in them. Pull them out from the
denominator for separate handling, leaving the square roots behind.

k‘k(N _ k)N—ka—kb—(N—k)

The next trick is to take a logarithm and to do all the manipulations on it.

In — kInk + (N — k)In(N — k) — klna — (N — k) Inb = f(k) (2.24)
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The original function is a maximum when this denominator is a minimum. When the numbers N and k are big, you can
treat k as a continuous variable and differentiate with respect to it. Then set this derivative to zero and finally, expand
in a power series about that point.

jkjf(k‘):lnk+1—ln(N—k)—1—1na+1nb:O
k a k a
lnN_k:h'lB, 7]\/,_]{;:5, k:aN

This should be no surprise; a is the fraction of the time the first choice occurs, and it says that the most likely number
of times that it occurs is that fraction times the number of trials. At this point, what is the second derivative?

d? 1 1
! W=ty
1 1 1 1 1 1 1

- 7 _+ T T
when k= aN, SR =+ =N TN —aN —aN "IN~ @N

About this point the power series for f(k) is

f(k) :f(aN)+(k:—aN)f’(aN)+%(k—aN)2f”(aN)~l—-~-

1
=NInN+ ——(k—-aN)*+-.. 2.25
n N+ o5 )+ (2.25)
To substitute this back into Eq. (2.23), take its exponential. Then because this will be a fairly sharp maximum, only
the values of k near to a/N will be significant. That allows me to use this central value of k in the slowly varying square
root coefficient of that equation, and | can also neglect higher order terms in the power series expansion there. Let
0 = k —aN. The result is the Gaussian distribution.

1 N NY 1 spaN
V27 \| aN(N —aN) NNed?/2abN — \/2abN 1

(2.26)

When a = b = 1/2, this reduces to Eq. (1.17).
When you accumulate N trials at a time (large /V) and then look for the distribution in these cumulative results,
you will commonly get a Gaussian. This is the central limit theorem, which says that whatever set of probabilities that
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you start with, not just a coin toss, you will get a Gaussian by averaging the data. (Not really true. There are some
requirements* on the probabilities that aren't always met, but if as here the variable has a bounded domain then it's o.k.
See problems 17.24 and 17.25 for a hint of where a naive assumption that all distributions behave the same way that
Gaussians do can be misleading.) If you listen to the clicks of a counter that records radioactive decays, they sound (and
are) random, and the time interval between the clicks varies greatly. If you set the electronics to click at every tenth
count, the result will sound regular, and the time interval between clicks will vary only slightly.

2.7 Useful Tricks
There are a variety of ways to manipulate series, and while some of them are simple they are probably not the sort of
thing you'd think of until you've seen them once. Example: what is the sum of

11 1 1
l—— 447
3+5 7+9

Introduce a parameter that you can manipulate, like the parameter you sometimes introduce to do integrals as in Eq. (1.5).
Consider the series with the parameter x in it.

flx) =2 -

Differentiate this with respect to x to get

LT (2.27)

fllz)y=1—2*+2* —ab + 28—

That looks a bit like the geometric series except that it has only even powers and the signs alternate. Is that too great
an obstacle? As 1/(1 — x) has only plus signs, then change x to —z, and 1/(1 + z) alternates in sign. Instead of x as
a variable, use 22, then you get exactly what you're looking for.

1

")=1—-2? 42t -2 +28—... = ——
f(z) + + 1122

Now to get back to the original series, which is f(1) recall, all that | need to do is integrate this expression for f’(x).
The lower limit is zero, because f(0) = 0.

! 1 1 Lon
f@) /0 Tir @t E )

* finite mean and variance
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This series converges so slowly however that you would never dream of computing 7 this way. If you take 100 terms,
the next term is 1/201 and you can get a better approximation to 7 by using 22/7.

The geometric series is 1 + x + 22 4+ 23 + .-+, but what if there's an extra factor in front of each term?
flx) =243z +42® + 523 4 - -

Multiply this by = and it is 22 + 322 + 423 + 52% + - - -, starting to look like a derivative.

d
xf(x):2x+3x2+4x3+5x4+~-:%(x2+x3+x4+~-)

Again, the geometric series pops up, though missing a couple of terms.

4 ) A1 !
xf(x)m(1+x+x+m+~--—l—x)dx[l_x—l—m}—1

The final result is then

C11-(1-2)?]  2-x
e

2.8 Diffraction

When light passes through a very small opening it will be diffracted so that it will spread out in a characteristic pattern
of higher and lower intensity. The analysis of the result uses many of the tools that you've looked at in the first two
chapters, so it's worth showing the derivation first.

The light that is coming from the left side of the figure has a wavelength A and wave number k = 27 /\. The
light passes through a narrow slit of width = a. The Huygens construction for the light that comes through the slit says
that you can effectively treat each little part of the slit as if it is a source of part of the wave that comes through to
the right. (As a historical note, the mathematical justification for this procedure didn't come until about 150 years after
Huygens proposed it, so if you think it isn't obvious why it works, you're right.)
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Call the coordinate along the width of the slit y, where 0 < ¥ < a. | want to find the total light wave that
passes through the slit and that heads at the angle # away from straight ahead. The light that passes through between
coordinates y and y + dy is a wave

Ady cos(kr — wt)

Its amplitude is proportional to the amplitude of the incoming wave, A, and to the width dy that | am considering. The
coordinate along the direction of the wave is 7. The total wave that will head in this direction is the sum (integral) over
all these little pieces of the slit.
Let 7o be the distance measured from the bottom of the slit to where the light is received far away. Find the value
of r by doing a little trigonometry, getting
r=ro—ysinf

The total wave to be received is now the integral

sin (k(ro — ysin ) — wt) ¢
—ksinf

/ Ady cos (k(ro — ysinf) —wt) = A
0

Put in the limits to get

e [sin (k(ro — asinf) — wt) — sin (krg — wt)]

| need a trigonometric identity here, one that you can easily derive with the techniques of complex algebra in chapter 3.

sinz —siny = 2sin <$;y> cos (x;_y> (2.28)
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Use this and the light amplitude is

24 ka . a .
“Tang S (—2 sin 9) Ccos <k;(7“0 — 5 sin 0) — wt) (2.29)

The wave is the cosine factor. It is a cosine of (k- distance — wt), and the distance in question is the distance to
the center of the slit. This is then a wave that appears to be coming from the middle of the slit, but with an amplitude
that varies strongly with angle. That variation comes from the other factors in Eq. (2.29).

It's the variation with angle that's important. The intensity of the wave, the power per area, is proportional to
the square of the wave's amplitude. I'm going to ignore all the constant factors, so there's no need to worry about the
constant of proportionality. The intensity is then (up to a factor)

sin? ((ka/2) sin6)
sin® 0

For light, the wavelength is about 400 to 700 nm, and the slit may be a millimeter or a tenth of a millimeter. The size
of ka/2 is then about

I= (2.30)

ka/2 = ma/\ ~ 3-0.1mm/500 nm ~ 1000

When you plot this intensity versus angle, the numerator vanishes when the argument of sin?() is n7, with 1 an integer,

+, —, or 0. This says that the intensity vanishes in these directions except for § = 0. In that case the denominator
vanishes too, so you have to look closer. For the simpler case that 6 # 0, these angles are
ka ka
n7T:7SIH9%79 n::tl, :|:2,

Because ka is big, you have many values of n before the approximation that sin § = 6 becomes invalid. You can rewrite
this in terms of the wavelength because k = 27/ \.

2mwa
2\

What happens at zero? Use power series expansions to evaluate this indeterminate form. The first term in the
series expansion of the sine is @ itself, so

I sin? ((ka/2)sin6) ((ka/2)6)2 _ (ka>2

nmw =

9, or  f#=n)\a

sin? 6 02 2 (2.31)
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What is the behavior of the intensity near § = 0? Again, use power series expansions, but keep another term
: 1 3 «Q
sm9:9—69 +--, and 1+x)*=14+ar+---

Remember, ka/2 is big! This means that it makes sense to keep just one term of the sine expansion for sin 6 itself, but
you'd better keep an extra term in the expansion of the sin?(ka. ..).

ORI CORS]
ICONEICORS
() -39

When you use the binomial expansion, put the binomial in the standard form, (1 4+ x) as in the second line of these
equations. What is the shape of this function? Forget all the constants, and it looks like 1 — 62, That’s a parabola.

The dots are the points where the intensity goes to zero, nA/a. Between these directions it reaches a maximum.
How big is it there ? These maxima are about halfway between the points where (kasinf)/2 = nz. This is

k
gsiHQZ (n+ Yo)m,  n==£l, 2, ...

At these angles the value of I is, from Eq. (2.30),

= (5) (o)
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The intensity at 6 = 0 is by Eq. (2.31), (ka/2)?, so the maxima off to the side have intensities that are smaller than
this by factors of
1

——— = 0.045
9712 /4 ’

———— =10.016,. ..
2572 /4 ’

— N/ 1 NN -

2.9 Checking Results

When you solve any problem, or at least think that you've solved it, you're not done. You still have to check to see
whether your result makes any sense. If you are dealing with a problem whose solution is in the back of the book then do
you think that the author is infallible? If there is no back of the book and you're working on something that you would
like to publish, do you think that you're infallible? Either way you can’t simply assume that you've made no mistakes;
you have to look at your answer skeptically.

There's a second reason, at least as important, to examine your results: that's where you can learn some physics
and gain some intuition. Solving a complex problem and getting a complicated answer may involve a lot of mathematics
but you don't usually gain any physical insight from doing it. When you analyze your results you can gain an understanding
of how the mathematical symbols are related to physical reality. Often an approximate answer to a complicated problem
can give you more insight than an exact one, especially if the approximate answer is easier to analyze.

The first tool that you have to use at every opportunity is dimensional analysis. If you are computing a length
and your result is a velocity then you are wrong. If you have something in your result that involves adding a time to an
acceleration or an angle to a distance, then you've made a mistake; go back and find it. You can do this sort of analysis
everywhere, and it is one technique that provides an automatic error finding mechanism. If an equation is dimensionally
inconsistent, backtrack a few lines and see whether the units are wrong there too. If they are correct then you know that
your error occurred between those two lines; then further narrow the region where the mistake happened by looking for
the place at which the dimensions changed from consistent to inconsistent and that's where the mistake happened.

The second tool in your analysis is to examine all the parameters that occur in the result and to see what happens
when you vary them. Especially see what happens when you push them to an extreme value. This is best explained by
some examples. Start with some simple mechanics to see the procedure.
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mi Qp—> M

ma

Two masses are attached by a string of negligible mass and that is wrapped around a pulley of mass M so that it
can't slip on the pulley. Analyze them to determine what is wrong with each. Assume that there is no friction between
my and the table and that the string does not slip on the pulley.

mg—M/Z

M2 —My _ g
me +my + M/2

me + M

N m2+m1—M/2g

(b) Ay (C) Qg

(a) az

(a) If my > meq, this is negative, meaning that the motion of m is being slowed down. But there's no friction
or other such force to do this.

OR If m1 = mea, this is zero, but there are still unbalanced forces causing these masses to accelerate.

(b) If the combination of masses is just right, for example m; = 1kg, mo = 1kg, and M = 2kg, the denominator
is zero. The expression for a, blows up — a very serious problem.

OR If M is very large compared to the other masses, the denominator is negative, meaning that a, is negative and the
acceleration is a braking. Without friction, this is impossible.

(c) If M > my and my, the numerator is mostly —M /2 and the denominator is mostly +M/ /2. This makes the
whole expression negative, meaning that m; and ms are slowing down. There is no friction to do this, and all the forces
are the direction to cause acceleration toward positive x.

OR If my = M2, this equals zero, saying that there is no acceleration, but in this system, a, will always be positive.

The same picture, but with friction p, between m; and the table.

ma g (ba :wg () ag = mae g
ma + pemy + M /2 * mo — M/2 v ma + pemy — M /2

(a) az =

(a) If p is very large, this approaches zero. Large friction should cause m; to brake to a halt quickly with very
large negative a,.
OR If there is no friction, px = 0, then m; plays no role in this result but if it is big then you know that it will decrease
the downward acceleration of ms.

(b) The denominator can vanish. If my = M /2 this is nonsense.
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(c) This suffers from both of the difficulties of (a) and (b).

Trajectory Example
When you toss an object straight up with an initial speed vy, you may expect an answer for the motion as a function of
time to be something like

1
vy(t) =vo —gt,  y(t) = vt — 59152 (2.32)
Should you expect this? Not if you remember that there's air resistance. If | claim that the answers are
v
oy (t) = —ve + (vo + ve)e 9™, y(t) = —vit + (vo + vt)gt [1— e9t/v] (2.33)

then this claim has to be inspected to see if it makes sense. And | never bothered to tell you what the expression
“v¢" means anyway. You have to figure that out. Fortunately that's not difficult in this case. What happens to these
equations for very large time? The exponentials go to zero, so

v
vy — —ve+ (Vo + ) 0= —uy, and y — —vtt+(vo+vt)j

vy is the terminal speed. After a long enough time a falling object will reach a speed for which the force by gravity and
the force by the air will balance each other and the velocity then remains constant.
Do they satisfy the initial conditions? Yes:

vy(0) = —ve + (vo +ve)e’ =vo,  Y(0) =0+ (vo +Ut)% (1-1)=0

What do these behave like for small time? They ought to reduce to something like the expressions in Eq. (2.32),
but just as important is to determine what the deviation from that simple form is. Keep some extra terms in the series
expansion. How many extra terms? If you're not certain, then keep one more than you think you will need. After some
experience you will usually be able to anticipate what to do. Expand the exponential:

—gt 1 [—gt\?
1+9+<9) +]
Ut 2 UVt

v 1 v 2¢2
:v0—<1—|—0>gt+<1+0>g +oe
Ut 2 Ut Ut

vy(t) = —ve + (v + )
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The coefficient of ¢ says that the object is slowing down more rapidly than it would have without air resistance. So far,
so good. Is the factor right? Not yet clear, so keep going. Did | need to keep terms to order ¢?? Probably not, but there
wasn't much algebra involved in doing it, so it was harmless.

Look at the other equation, for y.

t 1 /gt\* 1/[gt\®

1 Vo 2 1 Vo g2t3
=vot— - (1+—|gt"— -1+ —
v 2( +vt)g 6< +vt> (o *

Now differentiate this approximate expression for y with respect to time and you get the approximate expression for vy,.
That means that everything appears internally consistent, and | haven't introduced any obvious error in the process of
approximation.

What if the terminal speed is infinite, so there's no air resistance. The work to answer this is already done.
Expanding e~ 9t/ for small time is the same as for large v, so you need only look back at the preceding two sets of
equations and let vy — oo. The result is precisely the equations (2.32), just as you should expect.

You can even determine something about the force that | assumed for the air resistance: F}, = ma, = mduv,/dt.
Differentiate the approximate expression that you already have for vy, then at least for small ¢

d Vo 1 vo\ g%t
Ey=m— |vg— (142 (1)
y="mo |:’U(] (+Ut>gt+2< +Ut> ” +

:—m<1+Z0>g+-~-:—mg—mgvo/vt+-~- (2.34)
t

This says that the force appears to be (1) gravity plus (2) a force proportional to the initial velocity. The last fact comes
from the factor vy in the second term of the force equation, and at time zero, that is the velocity. Does this imply that |
assumed a force acting as [;y = —mg — (a constant times)v,? To this approximation that's the best guess. (It happens
to be correct.) To verify it though, you would have to go back to the original un-approximated equations (2.33) and
compute the force from them.

- oa c@
< _ - >
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Electrostatics Example

Still another example, but from electrostatics this time: Two thin circular rings have radii a and b and carry charges )1
and ()5 distributed uniformly around them. The rings are positioned in two parallel planes a distance ¢ apart and with
axes coinciding. The problem is to compute the force of one ring on the other, and for the single non-zero component

the answer is (perhaps)
ro— Q1Q2c /W/Q df (2.35)
Tome Jo [z + (b— a)? + 4absin® 0] 3/2

Is this plausible? First check the dimensions! The integrand is (dimensionally) 1/(c? )3/2 = 1/c3, where ¢ is one of the
lengths. Combine this with the factors in front of the integral and one of the Iengths (¢'s) cancels, leaving Q1Q2/¢coc?.
This is (again dimensionally) the same as Coulomb's law, ¢1q2/47megr?, so it passes this test.

When you've done the dimensional check, start to consider the parameters that control the result. The numbers
a, b, and ¢ can be anything: small, large, or equal in any combination. For some cases you should be able to say what
the answer will be, either approximately or exactly, and then check whether this complicated expression agrees with your
expectation.

If the rings shrink to zero radius this has a = b = 0, so F, reduces to

@i /”/2 L _ Qi@ T i@y
0

272¢ 3 2m2ey 263 dmepc?

and this is the correct expression for two point charges a distance c apart.
If ¢ > a and b then this is really not very different from the preceding case, where a and b are zero.
If @ =0 this is

QlQQC d@ . QlQQC ’/T/2 . QlQQC
F, - = = (2.36)
2m2eo Jo [c2 +02)° 20 (@2 1 p2)Y? aeg[e? 4 12)*

The electric field on the axis of a ring is something that you can compute easily. The only component of the electric
field at a point on the axis is itself along the axis. You can prove this by assuming that it's false. Suppose that there's a
Iateral component of E and say that it's to the right. Rotate everything by 180° about the axis and this component of
E will now be pointing in the opposite direction. The ring of charge has not changed however, so E must be pointing in
the original direction. This supposed sideways component is equal to minus itself, and something that's equal to minus
itself is zero.
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All the contributions to F except those parallel the axis add to zero. Along the axis each piece of charge dq
contributes the component
<—¢;‘>
p dg c

' AN
' .
C: . .
' .
' .

. 4meo[c® + b2 /2 + b2

The first factor is the magnitude of the field of the point charge at a distance r = v/c? + b? and the last factor is the
cosine of the angle between the axis and . Add all the dg together and you get ()1. Multiply that by ()2 and you have
the force on (J2 and it agrees with the expressions Eq. (2.36)

If c — 0 then F, — 0in Eq. (2.35). The rings are concentric and the outer ring doesn't push the inner ring either
up or down.

But wait. In this case, where ¢ — 0, what if a = b? Then the force should approach infinity instead of zero
because the two rings are being pushed into each other. If a = b then

_ QiQuc [T? do
P = /0 [ (2.37)

2m€g 2 + 4a2 sin? 0] 3/2

If you simply set ¢ = 0 in this equation you get

F, — 1020 /”/2 df
°

2mey da? sin2 0]/

The numerator is zero, but look at the integral. The variable § goes from 0 to /2, and at the end near zero the

integrand looks like
1 1 1

~ = 2,303
[1a2sin?0]%%  [40262)%* 84’0
Here | used the first term in the power series expansion of the sine. The integral near the zero end is then approximately

, 03 202

0
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and that's infinite. This way to evaluate F), is indeterminate: 0-occ can be anything. It doesn’t show that this F), gives
the right answer, but it doesn't show that it's wrong either.

Estimating a tough integral

Although this is more difficult, even tricky, I'm going to show you how to examine this case for small values of ¢ and not
for c = 0. The problem is in figuring out how to estimate the integral (2.37) for small ¢, and the key is to realize that
the only place the integrand gets big is in the neighborhood of # = 0. The trick then is to divide the range of integration

into two pieces
/2 do A /2
/ il
0 [c?+4a®sin® 0] 0 A

For any positive value of A the second piece of the integral will remain finite even as ¢ — 0. This means that in trying
to estimate the way that the whole integral approaches infinity | can ignore the second part of the integral. Now choose
A small enough that for 0 < # < A | can use the approximation sin = 6, the first term in the series for sine. (Perhaps
A =0.1or so.)

/2 do A do
for small ¢, / ; ~ / 372 + lower order terms
0 [c2+ 4a?sin? 0] 0 [c?+ 4a26?]

This is an elementary integral. Let = (¢/2a) tan ¢.

A A 2 A
/ do _ / (¢/2a) sec® p do _ 1 : / con ¢ — 1 Y
0 [+ 4a20?] 3/2 0 [+ c2tan2¢]3/2  2ac? ), 2a¢

The limit A’ comes from A = (¢/2a) tan A’, so this implies tan A’ = 2aA /c. Now given the tangent of an angle, | want
the sine — that's the first page of chapter one.

2aM/c 2aA

sin A’ = =
V14 (2aA/c)2 V2 + 4a2A2

As ¢ — 0, this approaches one. Put all of this together and you have the behavior of the integral in Eq. (2.37) for small
c.

/2 46 1
/ 7 ~ 5 + lower order terms
0 [02 + 4a? sin® 9} 2ac
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Insert this into Eq. (2.37) to get
F Q1Q2c 1 Q10
z ~Y

2m2¢p  2ac?  Am2epac

Now why should | believe this any more than | believed the original integral? When you are very close to one of
the rings, it will look like a long, straight line charge and the linear charge density on it is then A = ()1 /2ma. What is
the electric field of an infinitely long uniform line charge? E, = A\/27meor. So now at the distance ¢ from this line charge
you know the E-field and to get the force on (Q2 you simply multiply this field by ()5.

A Q2:Q1/27TCL

2mepC 2mepC

F, should be Q2 (2.38)

and that's exactly what | found in the preceding equation. After all these checks | think that | may believe the result, and
more than that you begin to get an intuitive idea of what the result ought to look like. That's at least as valuable. It's
what makes the difference between understanding the physics underlying a subject and simply learning how to manipulate
the mathematics.

Exercises
1 Evaluate by hand cos0.1 to four places.
2 In the same way, evaluate tan 0.1 to four places.

3 Use the first two terms of the binomial expansion to estimate v/2 = /1 + 1. What is the relative error?
[(wrong—right)/right]

4 Same as the preceding exercise, but for v/1.2.

. . 2 2
5 What is the domain of convergence for x — 2% + 2% — 2% + 25 — ...

o0
6 Does Z cos(n) — cos(n + 1) converge?
n=0

o0
1
7 Does —— converge?
2V o
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8 Does Z —converge?
n

n=1

x
9 What is the domain of fi —
at is the domain of convergence for -— — o—

10 From Eq. (2.1), find a series for (1_1@2

11 If x is positive, sum the series 1 + e % + e 2T 4+ 737 4 ...

12 What is the ratio of the exact value of 20! to Stirling’s approximation for it?

13 For the example in Eq. (2.22), what are the approximate values that would be predicted from Eq. (2.26)?
14 Do the algebra to evaluate Eq. (2.25).

15 Translate this into a question about infinite series and evaluate the two repeating decimal numbers: 0.444444 .. .,
0.987987987 . ..

16 What does the integral test tell you about the convergence of the infinite series > ;" n~P?

17 What would the power series expansion for the sine look like if you require it to be valid in arbitrary units, not just
radians? This requires using the constant “C" as in section 1.1.
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Problems

2.1 (a) If you borrow $200,000 to buy a house and will pay it back in monthly installments over 30 years at an annual
interest rate of 6%, what is your monthly payment and what is the total money that you have paid (neglecting inflation)?
To start, you have N payments p with monthly interest ¢ and after all /N payments your unpaid balance must reach
zero. The initial loan is L and you pay at the end of each month.

(L1 +i)—p)(1+3) —p)(1+i) —p -+ N times =0

Now carry on and find the general expression for the monthly payment. Also find the total paid.

(b) Does your general result for arbitrary N reduce to the correct value if you pay everything back at the end of one
month? [L(1+ 1) = p]

(c) For general N, what does your result become if the interest rate is zero? Ans: $1199.10, $431676

2.2 In the preceding problem, suppose that there is an annual inflation of 2%. Now what is the total amount of money
that you've paid in constant dollars? That is, one hundred dollars in the year 2010 is worth just $100/1.02° = $82.03
as expressed in year-2000 dollars. Each payment is paid with dollars of gradually decreasing value. Ans: $324211

2.3 Derive all the power series that you're supposed to memorize, Eq. (2.4).

2.4 Sketch graphs of the functions

2 2 _p2 _
T T 2, ,—x e\x|

ze zie ||

_ _ _ _ 2
e zTe x2e 1ol el e 1/

2.5 The sample series in Eq. (2.7) has a simple graph (22 between —L and +L) Sketch graphs of one, two, three terms
of this series to see if the graph is headed toward the supposed answer.

2.6 Evaluate this same Fourier series for 22 at = L; the answer is supposed to be L?. Rearrange the result from the
series and show that you can use it to evaluate ((2), Eq. (2.6). Ans: 72/6

2.7 Determine the domain of convergence for all the series in Eq. (2.4).
2.8 Determine the Taylor series for cosh x and sinh x.

2.9 Working strictly by hand, evaluate v/0.999. Also v/50. Ans: Here's where a calculator can tell you better than | can.
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2.10 Determine the next, %, term in the series expansion of the secant. Ans: 612°/720

2.11 The power series for the tangent is not as neat and simple as for the sine and cosine. You can derive it by taking
successive derivatives as done in the text or you can use your knowledge of the series for the sine and cosine, and the
geometric series.

sine  x—a3/31+ - 3 )
tabnx:cosx: L—a22/2 - = [z =273+ J[1 4 (27204 )]

-1

Use the expansion for the geometric series to place all the 2%, z#, etc. terms into the numerator, treating every term
after the “1” as a single small thing. Then collect the like powers to obtain the series at least through z°.
Ans: z + 2%/3 + 225 /15 + 1727 /315 + - - -

2.12 What is the series expansion for cscx = 1/sinz? As in the previous problem, use your knowledge of the sine
series and the geometric series to get this result at least through z°. Note: the first term in this series is 1/z.
Ans: 1/x + x/6 + 723 /360 + 3125 /15120 + - - -

2.13 The exact relativistic expression for the kinetic energy of an object with non-zero mass is
K =mc*(y—1) where vy =(1- 02/02)_1/2

and c is the speed of light in vacuum. If the speed v is small compared to the speed of light, find an approximate
expression for /K to show that it reduces to the Newtonian expression for the kinetic energy, but include the next term
in the expansion to determine how large the speed v must be in order that this correction term is 10% of the Newtonian
expression for the kinetic energy? Ans: v ~ 0.36 ¢

2.14 Use series expansions to evaluate

. 1l—cosz . sinkx
lim —— and lim
z—01 — coshx z—=0 T

2.15 Evaluate using series; you will need both the sine series and the binomial series.

I 1 1
im ( ————
=0 \sin2z 22
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Now do it again, setting up the algebra differently and finding an easier (or harder) way. Ans: 1/3

2.16 For some more practice with series, evaluate

2 1
lim ( — 4+ —————
z—0 <x 1-+1 —i—x)
Ans: Check experimentally with a few values of x on a pocket calculator.

2.17 Expand the integrand to find the power series expansion for
x
In(1 + ) :/ dt(1+¢)7!
0

Ans: Eq. (2.4)

2.18 (a) The error function erf(z) is defined by an integral. Expand the integrand, integrate term by term, and develop
a power series representation for erf. For what values of x does it converge? Evaluate erf(1) from this series and
compare it to the result of problem 1.34. (b) Also, as further validation of the integral in problem 1.13, do the power
series expansion of both sides of the equation and verify the expansions of the two sides of the equation agree .

2.19 Verify that the combinatorial factor ,,,C), is really what results for the coefficients when you specialize the binomial
series Eq. (2.4) to the case that the exponent is an integer.

2.20 Determine the double power series representation about (0,0) of 1/[(1 — z/a)(1 —y/b)]
2.21 Determine the double power series representation about (0,0) of 1/(1 — z/a — y/b)

2.22 Use a pocket calculator that can handle 100! and find the ratio of Stirling’s approximation to the exact value. You
may not be able to find the difference of two such large numbers. An improvement on the basic Stirling’s formula is

1
2mnn"e ™ [ 14+ —
m ( * 12n>

What is the ratio of approximate to exact for n =1, 2, 10?
Ans: 0.99898, 0.99948, ...
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2.23 Evaluate the sum Y {°1/n(n+1). To do this, write the single term 1/n(n+1) as a combination of two fractions
with denominator n and (n + 1) respectively, then start to write out the stated infinite series to a few terms to see the
pattern. When you do this you may be tempted to separate it into two series, of positive and of negative terms. Examine
the problem of convergence and explain why this is wrong. Ans: 1

2.24 (a) You can sometimes use the result of the previous problem to improve the convergence of a slow-converging
series. The sum ) ° 1/n? converges, but not very fast. If you add zero to it you don't change the answer, but if you're
clever about how you add it you can change this into a much faster converging series. Add 1 —>"7°1/n(n + 1) to this
series and combine the sums. (b) After Eq. (2.11) it says that it takes 120 terms to get the stated accuracy. Verify this.
For the same accuracy, how many terms does this improved sum take? Ans: about 8 terms

2.25 The electric potential from one point charge is kq/r. For two point charges, you add the potentials of each:
kqi/r1 + kqa/r2. Place a charge —q at the origin; place a charge +¢ at position (z,y,2) = (0,0,a). Write the total
potential from these at an arbitrary position PP with coordinates (z,y, 2). Now suppose that a is small compared to the
distance of P to the origin (1 = \/22 4+ y? + 22) and expand your result to the first non-vanishing power of a, or really
of a/r. This is the potential of an electric dipole. Also express your answer in spherical coordinates. See section 8.8 if
you need. Ans: kqa cos@/r?

2.26 Do the previous problem, but with charge —2¢q at the origin and charges +¢ at each of the two points (0,0, a)
and (0,0, —a). Again, you are looking for the potential at a point far away from the charges, and up to the lowest
non-vanishing power of a. In effect you're doing a series expansion in a/r and keeping the first surviving term. Also
express the result in spherical coordinates. The angular dependence should be proportional to Ps(cos ) = %cos2 0 — %
a “Legendre polynomial.” The 1 dependence will have a 1/7"3 in it. This potential is that of a linear quadrupole.

2.27 The combinatorial factor Eq. (2.18) is supposed to be the number of different ways of choosing n objects out of
a set of m objects. Explicitly verify that this gives the correct number of ways for m = 1, 2, 3, 4. and all n from zero
to m.

2.28 Pascal’s triangle is a visual way to compute the values of ,,,C,,. Start with the single digit 1 on the top line. Every
new line is computed by adding the two neighboring digits on the line above. (At the end of the line, treat the empty
space as a zero.) 1
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h

Write the next couple of lines of the triangle and then prove that this algorithm works, that is that the m'" row is the

mChn, where the top row has m = 0. Mathematical induction is the technique that | recommend.

2.29 Sum the series and show

2.30 You know the power series representation for the exponential function, but now apply it in a slightly different
context. Write out the power series for the exponential, but with an argument that is a differential operator. The letter
h represents some fixed number; interpret the square of d/dx as d*/dx?* and find

et f(x)
Interpret the terms of the series and show that the value of this is f(z + h).

2.31 The Doppler effect for sound with a moving source and for a moving observer have different formulas. The Doppler
effect for light, including relativistic effects is different still. Show that for low speeds they are all about the same.

;U — U ;L v ;L 1—v/c
r=17 v f_fU+Us =7 1+v/c
The symbols have various meanings: v is the speed of sound in the first two, with the other terms being the velocity
of the observer and the velocity of the source. In the third equation c is the speed of light and v is the velocity of the

observer. And no, 1 =1 isn't good enough; you should get these at least to first order in the speed.

2.32 In the equation (2.30) for the light diffracted through a narrow slit, the width of the central maximum is dictated
by the angle at the first dark region. How does this angle vary as you vary the width of the slit, a? What is this angle if
a =0.1mm and A = 700 nm? And how wide will the central peak be on a wall 5 meters from the slit? Take this width
to be the distance between the first dark regions on either side of the center.

2.33 An object is a distance d below the surface of a medium with index of refraction n. (For example, water.) When
viewed from directly above the object in air (i.e. use small angle approximation), the object appears to be a distance
below the surface given by (maybe) one of the following expressions. Show why most of these expressions are implausible;
that is, give reasons for eliminating the wrong ones without solving the problem explicitly.

() dvV1i+n2/n  (2)dn/vV1+n2  (3)nd  (4)d/n  (5) dn*/V/1+n?
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2.34 A mass mq hangs from a string that is wrapped around a pulley of mass M. As the mass m; falls with acceleration
ay, the pulley rotates. An anonymous source claims that the acceleration of m; is one of the following answers. Examine
them to determine if any is plausible. That is, examine each and show why it could not be correct. NOTE: solving the

problem and then seeing if any of these agree is not what this is about.
(1) ay = Mg/(m1 — M) (2) ay = Mg/(m1+ M) (3) ay = mag/M

2.35 Light travels from a point on the left (p) to a point on the right (¢), and
on the left it is in vacuum while on the right of the spherical surface it is in glass
with an index of refraction n. The radius of the spherical surface is R and you can
parametrize the point on the surface by the angle 6 from the center of the sphere.
Compute the time it takes light to travel on the indicated path (two straight line
segments) as a function of the angle 6. Expand the time through second order in
a power series in # and show that the function 7'(f) has a minimum if the distance
q is small enough, but that it switches to a maximum when q exceeds a particular
value. This position is the focus.

2.36 Combine two other series to get the power series in 6 for In(cos 6).
Ans: —360% — Lot — LO5 4 ...

2.37 Subtract the series for In(1 — x) and In(1 + ). For what range of = does this series converge? For what range of
arguments of the logarithm does it converge?
Ans: —1 <z <1, 0<arg<oo

2.38 A function is defined by the integral
fl) = / Ca
o 112

Expand the integrand with the binomial expansion and derive the power (Taylor) series representation for f about z = 0.
Also make a hyperbolic substitution to evaluate it in closed form.
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2.39 Light travels from a point on the right (p), hits a spherically shaped mirror
and goes to a point (¢). The radius of the spherical surface is R and you can
parametrize the point on the surface by the angle 6 from the center of the sphere.
Compute the time it takes light to travel on the indicated path (two straight line
segments) as a function of the angle 6.

Expand the time through second order in a power series in € and show that the !
function T'(A) has a minimum if the distance ¢ is small enough, but that it switches :
to a maximum when q exceeds a particular value. This is the focus.

>

2.40 (a) The quadratic equation ax?+bz+c = 0 is almost a linear equation if a is small enough: bx+c =0 = x = —¢/b.
You can get a more accurate solution iteratively by rewriting the equation as

and you can repeat the process. For comparison take the exact solution and do a power series expansion on it for small
a. See if the results agree.

(b) Where does the other root come from? That value of x is very large, so the first two terms in the quadratic are the
big ones and must nearly cancel. ax? + bz = 0 so * = —b/a. Rearrange the equation so that you can iterate it, and
compare the iterated solution to the series expansion of the exact solution.

Solve 0.001z2 4+ x +1 = 0. Ans: Solve it exactly and compare.

2.41 Evaluate the limits

. sinxz —tanx . sinxz —tanx . sinz —tanx
() i TS0 I TS (o) fiy S
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Ans: Check with a pocket calculator for x = 1.0, 0.1, 0.01
2.42 Fill in the missing steps in the derivation of Eq. (2.26).
2.43 s the result in Eq. (2.26) normalized properly? What is its integral dd over all 47 Ans: 1

2.44 A political survey asks 1500 people randomly selected from the entire country whom they will vote for as dog-
catcher-in-chief. The results are 49.0% for T.l. Hulk and 51.0% for T.A. Spiderman. Assume that these numbers are
representative, an unbiased sample of the electorate. The number 0.49 x 1500 = aN is now your best estimate for the
number of votes Mr. Hulk will get in a sample of 1500. Given this estimate, what is the probability that Mr. Hulk will
win the final vote anyway? (a) Use Eq. (2.26) to represent this estimate of the probability of his getting various possible
outcomes, where the center of the distribution is at kK = a/N. Using 6 = k —alN, this probability function is proportional
to exp ( — 0?/2abN), and the probability of winning is the sum of all the probabilities of having k& > N/2, that is,
ﬁ\’,% dk. (b) What would the answer be if the survey had asked 150 or 15000 people with the same 49-51 results?

Ans: (a) 3[1 —erf (\/N/2ab (5 — a))]. 22%, (b) 40%, 0.7%

2.45 For the function defined in problem 2.38, what is its behavior near x = 17 Compare this result to equation (1.4).
Note: the integral is fé‘%—ff. Also, 1 — 12 = (1 4+ t)(1 —t), and this ~ 2(1 — t) near 1.

2.46 (a) What is the expansion of 1/(1 + t2) in powers of ¢ for small t. (b) That was easy, now what is it for large ?
In each case, what is the domain of convergence?

2.47 The “average’ of two numbers a and b commonly means (a + b)/2, the arithmetic mean. There are many other
averages however. (a,b > 0)

M(a,b) = [(a" + b) /2] "

is the nt" mean, also called the power mean, and it includes many others as special cases. n = 2: root-mean-square,
n = —1: harmonic mean. Show that this includes the geometric mean too: vab = lim,_,g My (a,b). It can be shown
that dM,,/dn > 0; what inequalities does this imply for various means? Ans: harmonic < geometric < arithmetic <
rms

2.48 Using the definition in the preceding problem, show that dM,, /dn > 0. [Tough!]

2.49 In problem 2.18 you found the power series expansion for the error function — good for small arguments. Now
what about large arguments?

erf(z f/ dte —t2—1—/ dte —t2—1—/ dtft‘tz
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Notice that you can integrate the te=t” factor explicitly, so integrate by parts. Then do it again and again. This
provides a series in inverse powers that allows you evaluate the error function for large arguments. What is erf(3)?
Ans: 0.9999779095 See Abramowitz and Stegun: 7.1.23.

2.50 A friend of mine got a different result for Eq. (2.35). Instead of sin? # in the denominator, he got a sin . Analyze
his answer for plausibility.

2.51 Find the minimum of the function f(r) = ar + b/r for a, b, r > 0. Then find the series expansion of f about
that point, at least as far as the first non-constant term.

2.52 In problem 2.15 you found the limit of a function as x — 0. Now find the behavior of the same function as a series

expansion for small , through terms in 2. Ans: % + 1—1531;2. To test whether this answer or yours or neither is likely to

be correct, evaluate the exact and approximate values of this for moderately small x on a pocket calculator.

2.53 Following Eq. (2.34) the tentative conclusion was that the force assumed for the air resistance was a constant
times the velocity. Go back to the exact equations (2.33) and compute this force without approximation, showing that
it is in fact a constant times the velocity. And of course find the constant.

2.54 An object is thrown straight up with speed vy. There is air resistance and the resulting equation for the velocity
is claimed to be (only while it's going up)

vo — v tan(gt /vy)

) =
vy(?) Utvt+v0tan(gt/vt)

where v is the terminal speed of the object after it turns around and has then been falling long enough. (a) Check
whether this equation is plausible by determining if it reduces to the correct result if there is no air resistance and the
terminal speed goes to infinity. (b) Now, what is the velocity for small time and then use F}, = may to infer the probable
speed dependence of what | assumed for the air resistance in deriving this expression. See problem 2.11 for the tangent
series. (c) Use the exact vy () to show that no matter how large the initial speed is, it will stop in no more than some
maximum time. For a bullet that has a terminal speed of 100 m/s, this is about 16s.

2.55 Under the same circumstances as problem 2.54, the equation for position versus time is

B Ui L cos(gt/vy) + vo sin(gt/vy)
ult) = 9 1 < Ut )
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(a) What is the behavior of this for small time? Analyze and interpret what it says and whether it behaves as it should.
(b) At the time that it reaches its maximum height (v, = 0), what is its position? Note that you don’t need to have an
explicit value of ¢ for which this happens; you use the equation that ¢ satisfies.

2.56 You can get the individual terms in the series Eq. (2.13) another way: multiply the two series:

ax+bx ax? ebx

(& =e

Do so and compare it to the few terms found after (2.13).



Complex Algebra

When the idea of negative numbers was broached a couple of thousand years ago, they were considered suspect, in
some sense not “real.” Later, when probably one of the students of Pythagoras discovered that numbers such as v/2 are
irrational and cannot be written as a quotient of integers, legends have it that the discoverer suffered dire consequences.
Now both negatives and irrationals are taken for granted as ordinary numbers of no special consequence. Why should
/=1 be any different? Yet it was not until the middle 1800's that complex numbers were accepted as fully legitimate.
Even then, it took the prestige of Gauss to persuade some. How can this be, because the general solution of a quadratic
equation had been known for a long time? When it gave complex roots, the response was that those are meaningless
and you can discard them.

3.1 Complex Numbers
As soon as you learn to solve a quadratic equation, you are confronted with complex numbers, but what is a complex
number? If the answer involves v/—1 then an appropriate response might be “What is that?" Yes, we can manipulate
objects such as —1 + 27 and get consistent results with them. We just have to follow certain rules, such as 2 = —1. But
is that an answer to the question? You can go through the entire subject of complex algebra and even complex calculus
without learning a better answer, but it's nice to have a more complete answer once, if then only to relax* and forget it.
An answer to this question is to define complex numbers as pairs of real numbers, (a,b). These pairs are made
subject to rules of addition and multiplication:

(a,b) + (¢,d) = (a+c,b+d) and (a,b)(c,d) = (ac — bd, ad + bc)

An algebraic system has to have something called zero, so that it plus any number leaves that number alone. Here that
role is taken by (0, 0)
(0,0) + (a,b) = (a+0,b+0) = (a,b) for all values of (a,b)

What is the identity, the number such that it times any number leaves that number alone?

(1,0)(c;d) = (1-c—0-d,1-d+0-c) = (¢, d)

* If you think that this question is an easy one, you can read about some of the difficulties that the greatest
mathematicians in history had with it: “An Imaginary Tale: The Story of v/—1" by Paul J. Nahin. | recommend it.

70
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so (1,0) has this role. Finally, where does v/—1 fit in?
(0,1)(0,1)=(0-0—-1-1,0:14+1-0) = (-1,0)

and the sum (—1,0) + (1,0) = (0,0) so (0, 1) is the representation of i = /=1, thatis i +1=0. [(0,1)?+ (1,0) =
(0,0)].

This set of pairs of real numbers satisfies all the desired properties that you want for complex numbers, so having
shown that it is possible to express complex numbers in a precise way, I'll feel free to ignore this more cumbersome
notation and to use the more conventional representation with the symbol i:

(a,b) +— a+1ib

That complex number will in turn usually be represented by a single letter, such as z = x 4 1y.

The graphical interpretation of complex numbers is the Cartesian geometry of
the plane. The x and y in z = z+14y indicate a point in the plane, and the operations
of addition and multiplication can be interpreted as operations in the plane. Addition
of complex numbers is simple to interpret; it's nothing more than common vector
addition where you think of the point as being a vector from the origin. It reproduces
the parallelogram law of vector addition.

The magnitude of a complex number is defined in the same way that you
define the magnitude of a vector in the plane. It is the distance to the origin using
the Euclidean idea of distance.

Y1+ Y2 21+ 22

21 = T1 + Y1 !
1
1
1

29 = T+ 1Yo

1

1

T
T+ T2

12| = |x + iy| = /2?2 + y? (3.1)

The multiplication of complex numbers doesn’'t have such a familiar interpretation in the language of vectors.
(And why should it?)

3.2 Some Functions
For the algebra of complex numbers I'll start with some simple looking questions of the sort that you know how to handle
with real numbers. If 2 is a complex number, what are 2% and \/2? Use x and ¥ for real numbers here.

2=z +1y, so 2= (x+4iy)? =% —y*+ 2y
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That was easy, what about the square root? A little more work:
VZi=w=— z=w?
If 2 =2 + 4y and the unknown is w = u + v (u and v real) then

x4 iy = u? — v? + 2iuv, e rT=u"—v and Y = 2uv

These are two equations for the two unknowns © and v, and the problem is now to solve them.

2 2
v:%, SO x:uQ—f?, or u4—xu2—yZ:O
This is a quadratic equation for u2.
+ 2 2 + 2 2
W2 = TEVITTTY Mj then y— g [ TEVTTY” (3.2)

2 2

Use v = y/2u and you have four roots with the four possible combinations of plus and minus signs. You're supposed to
get only two square roots, so something isn't right yet; which of these four have to be thrown out? See problem 3.2.
What is the reciprocal of a complex number? You can treat it the same way as you did the square root: solve for
it.
(z+1y)(u+1w) =1, so ru —yv =1, v +yu =0
Solve the two equations for u and v. The result is
1 T —1y

Z = 7 3.3
z a? 4P (3:3)

See problem 3.3. At least it's obvious that the dimensions are correct even before you verify the algebra. In both of
these cases, the square root and the reciprocal, there is another way to do it, a much simpler way. That's the subject of
the next section.

Complex Exponentials
A function that is central to the analysis of differential equations and to untold other mathematical ideas: the exponential,
the familiar e*. What is this function for complex values of the exponent?

e = e = el (3.4)
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This means that all that's necessary is to work out the value for the purely imaginary exponent, and the general case is
then just a product. There are several ways to work this out, and I'll pick what is probably the simplest. Use the series
expansions Eq. (2.4) for the exponential, the sine, and the cosine and apply it to this function.

(iy)* | Gy)* | (iy)*

Wy ;
e’ =1+1y+ o] + 3l + m +
2 4 3 .5
Y Y . Y Y -
:1—5—1—]—-‘-—1—2y—a—%g—-'-}zcosy—i—lsmy (3.5)
A few special cases of this are worth noting: €/™/2 = i, also /™ = —1 and €2™ = 1. In fact, €2"™ = 1 so the

exponential is a periodic function in the imaginary direction.

The magnitude or absolute value of a complex number z = x + 1y is 7 = /22 + y2. Combine this with the
complex exponential and you have another way to represent complex numbers.

rsin 0

r cosf
z=x+iy=rcost+irsinf = r(cosf + isinf) = re? (3.6)
This is the polar form of a complex number and x + 2y is the rectangular form of the same number. The magnitude is
|z| = r = /22 + y2. What is v/i? Express it in polar form: (e”/Z)l/z, or better, (ei@m*“/m)l/?. This is
/2

1 +Z \o\‘
V2

e T/ — (™) T/t = +(cos T[4+ isinT/4) = +
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3.3 Applications of Euler’s Formula
When you are adding or subtracting complex numbers, the rectangular form is more convenient, but when you're
multiplying or taking powers the polar form has advantages.

2129 = r1€01rgeif2 = p pyei@1102) (3.7)

Putting it into words, you multiply the magnitudes and add the angles in polar form.
From this you can immediately deduce some of the common trigonometric identities. Use Euler's formula in the
preceding equation and write out the two sides.

r1(cost + isinb1)ry(cos by + isinfy) = riry [cos(@l + 62) +isin(fy + 92)]

The factors 1 and 7 cancel. Now multiply the two binomials on the left and match the real and the imaginary parts to
the corresponding terms on the right. The result is the pair of equations

cos(f1 + 62) = cos 6y cos Oy — sin By sin O, and sin(fy + 03) = cos 01 sin 65 + sin 61 cos O3 (3.8)

and you have a much simpler than usual derivation of these common identities. You can do similar manipulations for
other trigonometric identities, and in some cases you will encounter relations for which there's really no other way to
get the result. That is why you will find that in physics applications where you might use sines or cosines (oscillations,
waves) no one uses anything but complex exponentials. Get used to it.

The trigonometric functions of complex argument follow naturally from these.

e = cos +isinb, so, for negative angle e = cosh — isinf

Add these and subtract these to get

cosf = = (¥ 4 ) and sinf = %(ew — e ) (3.9)

N

What is this if 8 = iy?

. . 1 .
cosiy = = (e ¥ +e™Y) = coshy and sin iy = E(e_y —e™Y) =isinhy (3.10)

N~
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Apply Eq. (3.8) for the addition of angles to the case that = = + iy.

cos(x + 1Y) = cosx cos iy — sinx sin iy = cos T coshy — i sinx sinh y and

sin(x 4 4y) = sinx coshy + 7 cos x sinh y (3.11)

You can see from this that the sine and cosine of complex angles can be real and larger than one. The hyperbolic functions
and the circular trigonometric functions are now the same functions. You're just looking in two different directions in
the complex plane. It's as if you are changing from the equation of a circle, % + y?> = R?, to that of a hyperbola,
% — y? = R?. Compare this to the hyperbolic functions at the beginning of chapter one.

Equation (3.9) doesn't require that @ itself be real; call it z. Then what is sin? z + cos? 27

1 . . 1 . .
cosz == (¥ +e %) and sinz = — (e —e™%)
2 21
1. . . . .
cos? z 4+ sin z = 1 (2% 4727 42 — M%7 2% 4 2] =1
This polar form shows a geometric interpretation for the periodicity of the exponential. ei0+2m) — it — i(0+2kT)

In the picture, you're going around a circle and coming back to the same point. If the angle 6 is negative you're just
going around in the opposite direction. An angle of —7 takes you to the same point as an angle of +7r.

Complex Conjugate
The complex conjugate of a number 2 = x + 1y is the number z* = x —1y. Another common notation is Z. The product
2*z is (x — iy)(x + iy) = 2% + y? and that is |z|?, the square of the magnitude of z. You can use this to rearrange
complex fractions, combining the various terms with ¢ in them and putting them in one place. This is best shown by
some examples.

3+50  (3+59)(2—37)  21+1

2+31 (2+30)(2-3i) 13

What happens when you add the complex conjugate of a number to the number, 2 + 2*7
What happens when you subtract the complex conjugate of a number from the number?
If one number is the complex conjugate of another, how do their squares compare?

What about their cubes?

What about 2z + 22 and 2* 4 2*2?

What about comparing €% = e*+% and e**?

What is the product of a number and its complex conjugate written in polar form?
Compare cos z and cos z*.
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What is the quotient of a number and its complex conjugate?
What about the magnitude of the preceding quotient?

Examples
Simplify these expressions, making sure that you can do all of these manipulations yourself.

3—4i  (3—4i)(2+14) 10-5i

=i T @-het) - 5 Tt
(3i +1)? [QiiJr;:fi]:(—8+6i)[(2(zz_)$€;(f;)l) :(—8+6@')5§7Z:2_5262.
B+i0+i (=) +(=1)+i -1

R S ) R A

Manipulate these using the polar form of the numbers, though in some cases you can do it either way.

V= (em/Q)l/Q _ gim/a _ 1\2@'.

1—i\* _ [V2e7im/t 3_ —in/2\> _ —sinj2 _
<1+i> _<\@ei7r/4> —<e ) =° -t

, . 25 . 25
( 2i >25 _ 2¢17/2 _ 2¢17/2 _ (e”/6> B imat1/2) _
1+14v3 2(3 +i3V3) 2eim/3
Roots of Unity

What is the cube root of one? One of course, but not so fast; there are three cube roots, and you can easily find all of
them using complex exponentials.

1 = e2kmi, o 11/3 — <€2k7ri>1/3 _ p2kmi/3 (3.12)

and k is any integer. k =0,1,2 give

13 =1, e*™/3 = cos(2m /3) + isin(2m/3), e'™/3 = cos(4m /3) + i sin(4rm /3)
1 V3 1 V3

-ty -y
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and other positive or negative integers k just keep repeating these three values.
627ri/5

edmi/s
5th roots of 1

e6mi/5

e8mi/5

The roots are equally spaced around the unit circle. If you want the nt" root, you do the same sort of calculation:
the 1/n power and the integers k = 0,1,2,...,(n — 1). These are n points, and the angles between adjacent ones are
equal.

3.4 Geometry

Multiply a number by 2 and you change its length by that factor.

Multiply it by 7 and you rotate it counterclockwise by 90° about the origin.

Multiply is by #> = —1 and you rotate it by 180° about the origin. (Either direction: i? = (—1)?)

The Pythagorean Theorem states that if you construct three squares from the three sides of a right triangle, the
sum of the two areas on the shorter sides equals the area of the square constructed on the hypotenuse. What happens
if you construct four squares on the four sides of an arbitrary quadrilateral?

Represent the four sides of the quadrilateral by four complex numbers that add to zero. Start from the origin
and follow the complex number a. Then follow b, then ¢, then d. The result brings you back to the origin. Place four
squares on the four sides and locate the centers of those squares: Py, Ps,... Draw lines between these points as shown.

These lines are orthogonal and have the same length. Stated in the language of complex numbers, this is

P, — Py =i(P, — Py) (3.13)
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a+b+c+d=0
ta+tia=P

Pick the origin at one corner, then construct the four center points P172’3’4 as complex numbers, following the pattern
shown above for the first two. E.g. , you get to P from the origin by going halfway along a, turning left, then going the
distance |a|/2. Now write out the two complex number P, — P3 and P, — P, and finally manipulate them by using the
defining equation for the quadrilateral, a + b+ ¢+ d = 0. The result is the stated theorem. See problem 3.54.

3.5 Series of cosines

There are standard identities for the cosine and sine of the sum of angles and less familiar ones for the sum of two cosines
or sines. You can derive that latter sort of equations using Euler's formula and a little manipulation. The sum of two
cosines is the real part of €% + €%, and you can use simple identities to manipulate these into a useful form.

r=z@@+y +z@-y and y=s(x+y) - 5z-y)

See problems 3.34 and 3.35 to complete these.
What if you have a sum of many cosines or sines? Use the same basic ideas of the preceding manipulations, and
combine them with some of the techniques for manipulating series.

1+ cosf4cos20 + -+ cos NO =1 4 0 4 20 ... N0 (Real part)

The last series is geometric, so it is nothing more than Eq. (2.3).

. . . . 1 — ei(N+1)0
Lo (€9 () oo ()Y = 25
et (N+1)6/2 (e—z‘(N+1)0/2 _ 6z‘(N+1)(9/2) _ 61‘]\79/2 sin [(N + 1)9/2}

i0/2 (e—w/z _ ei9/2) sinf/2

(3.14)
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From this you now extract the real part and the imaginary part, thereby obtaining the series you want (plus another one,
the series of sines). These series appear when you analyze the behavior of a diffraction grating. Naturally you have to
check the plausibility of these results; do the answers work for small 6?

3.6 Logarithms
The logarithm is the inverse function for the exponential. If e¥ = 2z then w = In z. To determine what this is, let

6

w=u+iv and  z=re"?, then €UtV = Ul = peif

This implies that €“ = r and so u = Inr, but it doesn’t imply v = f. Remember the periodic nature of the exponential
function? e = i(0+2n™) 55 vou can conclude instead that v = @ + 2n.

Inz =1In (re?) = Inr +i(0 + 2n7) (3.15)
has an infinite number of possible values. Is this bad? You're already familiar with the square root function, and that

has two possible values, . This just carries the idea farther. For example In(—1) = 7 or 3im or —7im etc. As with
the square root, the specific problem that you're dealing with will tell you which choice to make.

Im[2 e
A sample graph of the logarithm in the com- T
plex plane is In(1 + #t) as ¢ varies from —oo to
+o0. : : |
—im /2L T

3.7 Mapping
When you apply a complex function to a region in the plane, it takes that region into another region. When you look
at this as a geometric problem you start to get some very pretty and occasionally useful results. Start with a simple

example, . .
w=f(z) =" =" = e%e¥ (3.16)

If y =0 and x goes from —oo to 400, this function goes from 0 to cc.
If y is /4 and x goes over this same range of values, f goes from 0 to infinity along the ray at angle m/4 above the



3—Complex Algebra 80

axis.

At any fixed ¥, the horizontal line parallel to the x-axis is mapped to the ray that starts at the origin and goes out to
infinity.

The strip from —oco < x < 400 and 0 < y < 7 is mapped into the upper half plane.

D

s

> mQoEHTI

The line B from —occ + im/6 to 00 + im /6 is mapped onto the ray B from the origin along the angle /6.
For comparison, what is the image of the same strip under a different function? Try

w=f(2)=2%=2%—y?+ 2xy

The image of the line of fixed y is a parabola. The real part of w has an 22 in it while the imaginary part is linear in z.
That is the representation of a parabola. The image of the strip is the region among the lines below.

TOoE T Q@

Pretty yes, but useful? In certain problems in electrostatics and in fluid flow, it is possible to use complex algebra
to map one region into another, with the accompanying electric fields and potentials or respectively fluid flows mapped
from a complicated problem into a simple one. Then you can map the simple solution back to the original problem and
you have your desired solution to the original problem. Easier said than done. It's the sort of method that you can learn
about when you find that you need it.
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Exercises
1 Express in the form a +ib: (3 —1)2, (2 — 37)(3 + 44). Draw the geometric representation for each calculation.
2 Express in polar form, re?: —2, 3i, 3+ 3i. Draw the geometric representation for each.

3 Show that (14 22)(3+4%)(5+ 61) satisfies the associative law of multiplication. l.e. multiply first pair first or multiply
the second pair first, no matter.

4 Solve the equation 22 — 22 + ¢ = 0 and plot the roots as points in the complex plane. Do this as the real number ¢
moves from c=0to c=2

5 Now show that (a + bi)[(c + di)(e + fi)] = [(a+bi)(c+ di)](e + fi). After all, just because real numbers satisfy
the associative law of multiplication it isn't immediately obvious that complex numbers do too.

6 Given z; = 2¢"0" and 2y = 4¢'120°, evaluate 27, 2122, 22/21. Draw pictures too.

7 Evaluate /i using the rectangular form, Eq. (3.2), and compare it to the result you get by using the polar form.
8 Given f(2) = 22+ 2+ 1, evaluate f(3+27), f(3 — 21).

9 For the same f as the preceding exercise, what are f'(3 + 27) and f'(3 — 27)?

10 Do the arithmetic and draw the pictures of these computations:

(3+42i)+ (—1+1), (3+42i) — (=1 +1), (—4+3i) — (4+1), -5+ (3 —51)

11 Show that the real part of z is (z + 2*)/2. Find a similar expression for the imaginary part of z.

12 What is ¢™ for integer n? Draw the points in the complex plane for a variety of positive and negative n.
13 What is the magnitude of (4 + 37)/(3 — 47)? What is its polar angle?

14 Evaluate (1 +4)%.

15 What is v/1 —i? Do this by the method of Eq. (3.2).

16 What is v/1 —7? Do this by the method of Eq. (3.6).

17 Sketch a plot of the curve z = e’ as the real parameter o varies from zero to infinity. Does the behavior of your
sketch conform to the small v behavior of the function? (And when no one's looking you can plug in a few numbers for
« to see what this behavior is.)

18 Verify the graph following Eq. (3.15).
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Problems

3.1 Pick a pair of complex numbers and plot them in the plane. Compute their product and plot that point. Do this
for several pairs, trying to get a feel for how complex multiplication works. When you do this, be sure that you're not
simply repeating yourself. Place the numbers in qualitatively different places.

3.2 In the calculation of the square root of a complex number,Eq. (3.2), | found four roots instead of two. Which ones
don’t belong? Do the other two expressions have any meaning?

3.3 Finish the algebra in computing the reciprocal of a complex number, Eq. (3.3).

3.4 Pick a complex number and plot it in the plane. Compute its reciprocal and plot it. Compute its square and square
root and plot them. Do this for several more (qualitatively different) examples.

3.5 Plot e in the plane where ¢ is a complex constant of your choosing and the parameter ¢ varies over 0 < t < co.
Pick another couple of values for ¢ to see how the resulting curves change. Don't pick values that simply give results
that are qualitatively the same; pick values sufficiently varied so that you can get different behavior. If in doubt about
how to plot these complex numbers as functions of ¢, pick a few numerical values: e.g. ¢ = 0.01,0.1, 0.2, 0.3, etc.
Ans: Spirals or straight lines, depending on where you start

3.6 Plot sinct in the plane where ¢ is a complex constant of your choosing and the parameter ¢ varies over 0 <t < oc.
Pick another couple of qualitatively different values for ¢ to see how the resulting curves change.

3.7 Solve the equation 22 +i2+1=0

3.8 Just as Eq. (3.11) presents the circular functions of complex arguments, what are the hyperbolic functions of complex
arguments?

3.9 From (em)?’, deduce trigonometric identities for the cosine and sine of triple angles in terms of single angles.
Ans: cos3x = cos ¥ — 4sin? x cosx = 4cos® v — 3cos

3.10 For arbitrary integer n > 1, compute the sum of all the nth roots of one. (When in doubt, try n = 2, 3, 4 first.)

3.11 Either solve for z in the equation e? = 0 or prove that it can’t be done.
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3.12 Evaluate z/z* in polar form.

3.13 From the geometric picture of the magnitude of a complex number, the set of points z defined by |z — 29| = R is
a circle. Write it out in rectangular components to see what this is in conventional Cartesian coordinates.

3.14 An ellipse is the set of points z such that the sum of the distances to two fixed points is a constant: |z — 21|+ |2 —
29| = 2a. Pick the two points to be 21 = — f and 2o = +f on the real axis (f < a). Write z as x + 1y and manipulate
this equation for the ellipse into a simple standard form. | suggest that you leave everything in terms of complex numbers
(z, 2%, z1, 2, etc. ) until some distance into the problem. Use = + iy only after it becomes truly useful to do so.

3.15 Repeat the previous problem, but for the set of points such that the difference of the distances from two fixed
points is a constant.

3.16 There is a vertical line x = — f and a point on the x-axis 2o = +f. Find the set of points z so that the distance
to 2¢ is the same as the perpendicular distance to the line z = —f.

3.17 Sketch the set of points [z — 1] < 1.

3.18 Simplify the numbers

2
1+ —1+1iV3 i+ 13 V3 +i
1—i’ +1+4v3’ V3Vi— 11T — 4 1+

3.19 Express in polar form; include a sketch in each case.

2-2i,  V3+i, =i, —17-23i

3.20 Take two complex numbers; express them in polar form, and subtract them.

z = 7“16291, 29 = 7‘26102, and 23 =29 — 21

Compute 2323, the magnitude squared of z3, and so derive the law of cosines. You did draw a picture didn’t you?

3.21 What is i? Ans: If you'd like to check your result, type i A i into Google. Or use a calculator such as the one
mentioned on page 7.


http://www.google.com
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3.22 For what argument does sinf = 2? Next: cosf = 27
Ans: sin! 2 = 1.5708 £ 71.3170

3.23 What are the other trigonometric functions, tan(ix), sec(ix), etc. What are tan and sec for the general argument
T +1y.
Ans: tan(z + 1y) = (tanx + i tanhy) /(1 — i tan z tanh y)

3.24 The diffraction pattern from a grating involves the sum of waves from a large number of parallel slits. For light
observed at an angle § away from directly ahead, this sum is, for N + 1 slits,

ro — dsin 8

cos (krg — wt) + cos (k(ro — dsin0) — wt) + cos (k(ro — 2dsin§) — wt)+
...+ cos (k(ro — Ndsin0) — wt)
Express this as the real part of complex exponentials and sum the finite series. Show that the resulting wave is

sin (3(N + 1)kdsin 6)
sin (%kd sin 6))

cos (k(ro — $Ndsin6) — wt)
Interpret this result as a wave that appears to be coming from some particular point (where?) and with an intensity

pattern that varies strongly with 6.

3.25 (a) If the coefficients in a quadratic equation are real, show that if 2 is a complex root of the equation then so is
z*. If you do this by reference to the quadratic formula, you'd better find another way too, because the second part of
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this problem is
(b) Generalize this to the roots of an arbitrary polynomial with real coefficients.

3.26 You can represent the motion of a particle in two dimensions by using a time-dependent complex number with
z=x+1y = ret? showing its rectangular or polar coordinates. Assume that 7 and 6 are functions of time and
differentiate re® to get the velocity. Differentiate it again to get the acceleration. You can interpret e'? as the unit
vector along the radius and ie®? as the unit vector perpendicular to the radius and pointing in the direction of increasing

theta. Show that
B [dr (i
dt2 dt? dt

and translate this into the usual language of components of vectors, getting the radial () component of acceleration
and the angular component of acceleration as in section 8.9.

\ 0 [Td%) L ydr d&]

3.27 Use the results of the preceding problem, and examine the case of a particle moving directly away from the origin.
(a) What is its acceleration? (b) If instead, it is moving at 7 = constant, what is its acceleration? (c) If instead, x = ¢
and y = vot, what are 7(t) and 6(t)? Now compute d?z/dt? from Eq. (3.17).

3.28 Was it really legitimate simply to substitute = + ¢y for 81 4+ 05 in Eq. (3.11) to get cos(x + 1y)? Verify the result
by substituting the expressions for cosx and for cosh y as exponentials to see if you can reconstruct the left-hand side.

3.29 The roots of the quadratic equation 22 4 bz + ¢ = 0 are functions of the parameters b and c. For real b and ¢ and
for both cases ¢ > 0 and ¢ < 0 (say %1 to be specific) plot the trajectories of the roots in the complex plane as b varies
from —oo to +00. You should find various combinations of straight lines and arcs of circles.

3.30 In integral tables you can find the integrals for such functions as
/ dx e** cos bz, or / dx e sin bx

Show how easy it is to do these by doing both integrals at once. Do the first plus 7 times the second and then separate
the real and imaginary parts.

3.31 Find the sum of the series

o0 .
SO
n

1
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Ans: im/4 — 51n2
3.32 Evaluate |cos z|%. Evaluate |sin z|%.

3.33 Evaluate /1 + 7. Evaluate In(1 + 7). Evaluate tan(1 + 7).

3.34 (a) Beats occur in sound when two sources emit two frequencies that are almost the same. The perceived wave is
the sum of the two waves, so that at your ear, the wave is a sum of two cosines of wit and of wst. Use complex algebra
to evaluate this. The sum is the real part of

eiwﬂf + eiWQt
Notice the two identities

w1 +w2 W) —Wwo

2 2

and the difference of these for wy. Use the complex exponentials to derive the results; don't just look up some trig
identity. Factor the resulting expression and sketch a graph of the resulting real part, interpreting the result in terms of
beats if the two frequencies are close to each other. (b) In the process of doing this problem using complex exponentials,
what is the trigonometric identity for the sum of two cosines? While you're about it, what is the difference of two
cosines?
Ans: coswit + coswat = 2 cos 5 (w1 + wo)t cos 5 (wl wa)t.

w1 =

3.35 Derive using complex exponentials: sinz — siny = 2sin ( 2y) cos (CHy)

3.36 The equation (3.4) assumed that the usual rule for multiplying exponentials still holds when you are using complex
numbers. Does it? You can prove it by looking at the infinite series representation for the exponential and showing that

2 3 v b3 b)2
e’ = 1+a+&+%+ H1+b++3.+ ]=[1+(a+b)+(a;)+

You may find Eq. (2.19) useful.

3.37 Look at the vertical lines in the z-plane as mapped by Eq. (3.16). | drew the images of lines ¥y = constant, now
you draw the images of the straight line segments x = constant from 0 < y < 7. The two sets of lines in the original
plane intersect at right angles. What is the angle of intersection of the corresponding curves in the image?

3.38 Instead of drawing the image of the lines £ =constant as in the previous problem, draw the image of the line
1y = T tan o, the line that makes an angle o with the horizontal lines. The image of the horizontal lines were radial lines.
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At a point where this curve intersects one of the radial lines, what angle does the curve make with the radial line? Show
that the answer is «;, the same angle of intersection as in the original picture.

3.39 Write each of these functions of z as two real functions u and v such that f(2) = u(x,y) + iv(z,y).

3 1+z 1

3.40 Evaluate z% where z is an arbitrary complex number, z = = + iy = ret?,

3.41 What is the image of the domain —0co < = < +o0o and 0 < y < 7 under the function w = /2? Ans: One
boundary is a hyperbola.

3.42 What is the image of the disk |2 — a| < b under the function w = cz 4+ d? Allow c and d to be complex. Take a
real.

3.43 What is the image of the disk |z — a] < b under the function w = 1/2? Assume b < a. Ans: Another disk,
centered at a/(a? — b?).

3.44 (a) Multiply (2 +%)(3 + ¢) and deduce the identity
tan~1(1/2) +tan~1(1/3) = 7/4
(b) Multiply (5 +4)*(—239 + %) and deduce
4tan~1(1/5) —tan~1(1/239) = 7 /4

For (b) a sketch will help sort out some signs.

(c) Using the power series representation of the tan~!, Eq. (2.27), how many terms would it take to compute 100
digits of ™ as 4tan~!1? How many terms would it take using each of these two representations, (a) and (b), for 7?
Ans: Almost a googol versus respectively about 540 and a few more than 180 terms.

3.45 Use Eq. (3.9) and look back at the development of Eq. (1.4) to find the sin™! and cos™! in terms of logarithms.

3.46 Evaluate the integral [* dx e~2%" cos B for fixed real v and 3. Sketch a graph of the result versus 3. Sketch a
graph of the result versus «, and why does the graph behave as it does? Notice the rate atzwhich the result approaches
zero as either v — 0 or @ — co. The behavior is very different in the two cases. Ans: e~ /40‘\/7r/a
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3.47 Does the equation sin 2z = 0 have any roots other than the real ones? How about the cosine? The tangent?
3.48 Compute (a) sin~t4. (b) cos™'i. (c) tan'4. (d) sinh™'i. Ans: sin™'i =04 0.8814, cos™'i = 7/2 — 0.88114.

3.49 By writing

1 i1 1
1+22 2|lx+i xz—1

/1 dx o
o 14+22 4

3.50 Solve the equations (a) coshu =0 (b) tanhu = 2 (c) sechu =27
Ans: sech™! 2i = 0.4812 — i1.5707

and integrating, check the equation

3.51 Solve the equations (@) z—22*=1 (b) 2% — 322+ 4z = 21 after verifying that 1+1 is a root. Compare
the result of problem 3.25.

3.52 Confirm the plot of In(1+%y) following Eq. (3.15). Also do the corresponding plots for In(10+%y) and In(100+zy).
And what do these graphs look like if you take the other branches of the logarithm, with the (6 + 2nm)?

3.53 Check that the results of Eq. (3.14) for cosines and for sines give the correct results for small 7 What about
0 — 277

3.54 Finish the calculation leading to Eq. (3.13), thereby proving that the two indicated lines have the same length and
are perpendicular.

3.55 In the same spirit as Eq. (3.13) concerning squares drawn on the sides of an arbitrary quadrilateral,

start with an arbitrary triangle and draw equilateral triangles on each side. Find the centroids of each

of the equilateral triangles and connect them. The result is an equilateral triangle. Recall: the centroid 4
is one third the distance from the base to the vertex. [This one requires more algebra than the one in ,
the text.] (Napoleon's Theorem)



Differential Equations

The subject of ordinary differential equations encompasses such a large field that you can make a profession of it. There
are however a small number of techniques in the subject that you have to know. These are the ones that come up so
often in physical systems that you need both the skills to use them and the intuition about what they will do. That small
group of methods is what I'll concentrate on in this chapter.

a2z \?
(dtf> +t?22t +1=0

relating acceleration to position and time, is not one that I'm especially eager to solve, and one of the things that makes
it difficult is that it is non-linear. This means that starting with two solutions x1 () and z2(%), the sum x; 4+ 23 is not a
solution; look at all the cross-terms you get if you try to plug the sum into the equation and have to cube the sum of
the second derivatives. Also if you multiply 21 (%) itself by 2 you no longer have a solution.

An equation such as

4.1 Linear Constant-Coefficient
A differential equation such as

d3x dz
t 2
t =0
as a "
may be a mess to solve, but if you have two solutions, z1(t) and z2(t) then the sum ax; + fz9 is also a solution.
Proof? Plug in:

ot d3(axy + Pxs) .2 d(axy + Brg)

pTE T — (04561 + 6332)

d3x dx (A3 dx
— t 1 271_ 2 242 _
—a<e 3 Tt >+ﬂ< 5 U x2> 0

This is called a linear, homogeneous equation because of this property. A similar-looking equation,

d3x dx
ol L
dat3 dt
does not have this property, though it's close. It is called a linear, inhomogeneous equation. If x1(t) and x2(%) are

solutions to this, then if | try their sum as a solution | get 2¢ = ¢, and that's no solution, but it misses working only
because of the single term on the right, and that will make it not too far removed from the preceding case.

—x =t

89
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One of the most common sorts of differential equations that you see is an especially simple one to solve. That's
part of the reason it's so common. This is the linear, constant-coefficient, differential equation. If you have a mass tied
to the end of a spring and the other end of the spring is fixed, the force applied to the mass by the spring is to a good
approximation proportional to the distance that the mass has moved from its equilibrium position.

If the coordinate x is measured from the mass's equilibrium position, the equation F =ma says

M md2—x = —kzx (4.1)

)—»x dt2

If there's friction (and there's always friction), the force has another term. Now how do you describe friction mathemat-
ically? The common model for dry friction is that the magnitude of the force is independent of the magnitude of the
mass's velocity and opposite to the direction of the velocity. If you try to write that down in a compact mathematical
form you get something like

= U

Fiiction = —,ukFNW (4.2)
This is hard to work with. It can be done, but I'm going to do something different. (See problem 4.31 however.) Wet
friction is easier to handle mathematically because when you lubricate a surface, the friction becomes velocity dependent

in a way that is, for low speeds, proportional to the velocity.
Ffriction - —bﬁ (4-3)

Neither of these two representations is a completely accurate description of the way friction works. That's far more
complex than either of these simple models, but these approximations are good enough for many purposes and I'll settle
for them.

Assume “wet friction” and the differential equation for the motion of m is

d’x dx
Mmooy = kx bdt (4.4)
This is a second order, linear, homogeneous differential equation, which simply means that the highest derivative present
is the second, the sum of two solutions is a solution, and a constant multiple of a solution is a solution. That the
coefficients are constants makes this an easy equation to solve.
All you have to do is to recall that the derivative of an exponential is an exponential. det/dt = el. Substitute
this exponential for x(t), and of course it can't work as a solution; it doesn’t even make sense dimensionally. What is
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e to the power of a day? You need something in the exponent to make it dimensionless, e*. Also, the function z is

supposed to give you a position, with dimensions of length. Use another constant: x(t) = Ae® . Plug this into the
differential equation (4.4) to find

mAa2e® + bAae®™ + kAe™ = Ae™t [moz2 +ba+k| =0

The product of factors is zero, and the only way that a product of two numbers can be zero is if one of the numbers is
zero. The exponential never vanishes, and for a non-trivial solution A # 0, so all that's left is the polynomial in «.

b+ Vb2 — 4k
ma? +ba+k =0, with solutions  «a = 57 m (4.5)
The position function is then
x(t) = Ae®! + Be??! (4.6)

where A and B are arbitrary constants and «; and «» are the two roots.

Isn't this supposed to be oscillating? It is a harmonic oscillator after all, but the exponentials don't look very
oscillatory. If you have a mass on the end of a spring and the entire system is immersed in honey, it won't do much
oscillating! Translated into mathematics, this says that if the constant b is too large, there is no oscillation. In the
equation for «, if b is large enough the argument of the square root is positive, and both «'s are real — no oscillation.
Only if b is small enough does the argument of the square root become negative; then you get complex values for the
«'s and hence oscillations.

Push this to the extreme case where the damping vanishes: b = 0. Then oy = i\/k/m and as = —i\/k/m.

Denote wy = \/k/m.

z(t) = Ae™ot 4 Be~iwol (4.7)

You can write this in other forms using sines and cosines, see problem 4.10. To determine the arbitrary constant A
and B you need two equations. They come from some additional information about the problem, typically some initial
conditions. Take a specific example in which you start from the origin with a kick, 2(0) = 0 and %(0) = vy.

z(0)=0=A+ B, 2(0) = vy = twpA — iwy B

Solve for A and B to get A = —B = vy/(2iwp). Then

Vo i —i Vo .
= — [6“"07f —e Wot] = — sinwgt
21Wo Wo
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As a check on the algebra, use the first term in the power series expansion of the sine function to see how x behaves
for small t. The sine factor is sinwyt ~ wyt, and then z(%) is approximately vot, just as it should be. Also notice that
despite all the complex numbers, the final answer is real. This is another check on the algebra.

Damped Oscillator
If there is damping, but not too much, then the a's have an imaginary part and a negative real part. (Is it important
whether it's negative or not?)

—b+iv4km — b2 : ’
o PENVIRMR b R P (4.8)
om m m  4m?

This represents a damped oscillation and has frequency a bit lower than the one in the undamped case. Use the same
initial conditions as above and you will get similar results (let v = b/2m)

:L'(t) _ Ae(—’y-i-iw’)t +Be(—’y—iw’)t
z(0) = A+ B =0, v2(0) = (=7 + i) A+ (—y — ') B = vy (4.9)

The two equations for the unknowns A and B imply B = —A and

. v il ol v
2iw' A = vy, so x(t) = Tfﬂe_w [t — 7] = ie‘”t sinw't (4.10)

AN
/  —

For small values of ¢, the first terms in the power series expansion of this result are

v

x(t) = ;(3[1 —yt+ Y22 — Wt - WP 6+ ] = vot — voytE 4 ...
The first term is what you should expect, as the initial velocity is v, = vg. The negative sign in the next term says that
it doesn’'t move as far as it would without the damping, but analyze it further. Does it have the right size as well as the
right sign? It is —vpyt? = —up(b/2m)t?. But that's an acceleration: a,t?/2. It says that the acceleration just after the
motion starts is a; = —bvg/m. Is that what you should expect? As the motion starts, the mass hasn't gone very far so
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the spring doesn't yet exert much force. The viscous friction is however —bv,. Set that equal to ma, and you see that
—voyt? has precisely the right value:

b 1-bv
~ — 2 frnd — —_— 2 g —_ 0 2
x(t) = vot — veyt” = vot — v 2mt vot + 5 t

The last term says that the acceleration starts as a; = —buvg/m, as required.

In Eq. (4.8) | assumed that the two roots of the quadratic, the two s, are different. What if they aren't? Then
you have just one value of o to use in defining the solution € in Eq. (4.9). You now have just one arbitrary constant
with which to match two initial conditions. You're stuck. See problem 4.11 to understand how to handle this case
(critical damping). It's really a special case of what I've already done.

What is the energy for this damped oscillator? The kinetic energy is mv?/2 and the potential energy for the
spring is k22 /2. s the sum constant? No.

If Fip=maz =—kx+ Fygrice, then
de d1 9 9 dv dz
— = ——(mv* + kx*) = mv— + kx— = vy (mag + kr) = F) fict¥ 4.11
g = i mv k) g TRy = ve(mas + k) = Fo giect (4.11)
“Force times velocity” is a common expression for power, and this says that the total energy is decreasing according to
this formula. For the wet friction used here, this is dF/dt = —bv2, and the energy decreases exponentially on average.

4.2 Forced Oscillations
What happens if the equation is inhomogeneous? That is, what if there is a term that doesn't involve x or its derivatives
at all. In this harmonic oscillator example, apply an extra external force. Maybe it's a constant; maybe it's an oscillating
force; it can be anything you want not involving .
d*x dx
M—— = —kx — b— + Feu(t 4.12
dt2 dt eXt( ) ( )
The key result that you need for this class of equations is very simple to state and not too difficult to implement. It is a
procedure for attacking any linear inhomogeneous differential equation and consists of three steps.
1. Temporarily throw out the inhomogeneous term [here Fi:(t)] and completely solve the resulting homo-
geneous equation. In the current case that's what you just saw when | worked out the solution to the
differential equation md?z /dt* + bdx /dt + kz = 0. [Zhom (t)]

2. Find any one solution to the full inhomogeneous equation. Note that for step one you have to have all
the arbitrary constants present; for step two you do not. [Zj,n ()]
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3. Add the results of steps one and two. [Thom(t) + Zinh(?)]

I've already done step one. To carry out the next step I'll start with a particular case of the forcing function. If
Foxt(t) is simple enough, you should be able to guess the answer to step two. If it's a constant, then a constant will
work for . If it's a sine or cosine, then you can guess that a sine or cosine or a combination of the two should work. If
it's an exponential, then guess an exponential — remember that the derivative of an exponential is an exponential. If
it's the sum of two terms, such as a constant and an exponential, it's easy to verify that you add the results that you get
for the two cases separately. If the forcing function is too complicated for you to guess a solution then there's a general
method using Green's functions that I'll get to in section 4.6.

Choose a specific example

Fexe(t) = Fy[1 — e (4.13)

This starts at zero and builds up to a final value of F{. It does it slowly or quickly depending on [3.
Fy

t
Start with the first term, Fj, for external force in Eq. (4.12). Try x(t) = C' and plug into that equation to find
EC = Fy

This is simple and determines C'.
Next, use the second term as the forcing function, —Fye Pt Guess a solution x(t) = C'e=Pt and plug in. The
exponential cancels, leaving

—F,
mp? —bf + k

The total solution for the inhomogeneous part of the equation is then the sum of these two expressions.

i) = o ()

The homogeneous part of Eq. (4.12) has the solution found in Eq. (4.6) and the total is

mC' 82— bC'B+kC' = —Fy o (=

1 1
2(t) = Thom(t) + Tinn(t) = () = Ae™® + Be*' + Fy (k - mﬂQ—bﬁJrk;e_ﬂt> (4.14)
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There are two arbitrary constants here, and this is what you need because you have to be able to specify the initial
position and the initial velocity independently; this is a second order differential equation after all. Take for example the
conditions that the initial position is zero and the initial velocity is zero. Everything is at rest until you start applying
the external force. This provides two equations for the two unknowns.

2 _
g

2(0) =0= Aay + Bas + Fy——5——75—
© Oy

Now all you have to do is solve the two equations in the two unknowns A and B. Take the first, multiply it by a5 and

subtract the second. This gives A. Do the same with o1 instead of ap to get B. The results are

1 r az(mpB? —bB) — kB

AZO@-O@ O k(mBE—bB + k)

Interchange a1 and s to get B.
The final result is

(t) = Fy  (ca(mpB? = bB) — kB)e*! — (ar(mB® — bf) — ke
Cag— s k(mpB2 —bp + k)

If you think this is messy and complicated, you haven't seen messy and complicated. When it takes 20 pages to write
out the equation, then you're entitled say that it is starting to become involved.

Why not start with a simpler example, one without all the terms? The reason is that a complex expression is often
easier to analyze than a simple one. There are more things that you can do to it, and so more opportunities for it to go
wrong. The problem isn't finished until you've analyzed the supposed solution. After all, | may have made some errors
in algebra along the way. Also, analyzing the solution is the way you learn how these functions work.

1. Everything in the solution is proportional to F{y and that's not surprising.

2. I'll leave it as an exercise to check the dimensions.

3. A key parameter to vary is 3. What should happen if it is either very large or very small? In the former
case the exponential function in the force drops to zero quickly so the force jumps from zero to Fj in a
very short time — a step in the limit that 5 — 0.
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4. If B is very small the force turns on very gradually and gently, as though you are being very careful not
to disturb the system.

Take point 3 above: for large /3 the dominant terms in both numerator and denominator everywhere are the m3?
terms. This result is then very nearly

Fy  (az(mpB?)e! — (a1 (mfB?)) e +F (1 : e‘ﬁt)

a1 — Qo kmg? ko (mf3?)
Fy

k(Oél — 052)

x(t)

Q

Q

1
[(a26‘“t — ale‘m} + FOE

Use the notation of Eq. (4.9) and you have

FO - —_ ! . A~y ].
t) ~ = (=y+iwt Ne(=7=iwt] 4 =
N i — (o — ) (1 e (=7 + e |+ Foy;
_ Fpe ! o, ., . 1
= T [ — 2i7ysinw't — 2iw’ cosw't] + FOE
Foe v o 1
=7 [— Jsmw’t— cosw't] +FOE (4.16)

At time t = 0 this is still zero even with the approximations. That's comforting, but if it hadn't happened it's not
an insurmountable disaster. This is an approximation to the exact answer after all, so it could happen that the initial
conditions are obeyed only approximately. The exponential terms have oscillations and damping, so the mass oscillates
about its eventual equilibrium position and after a long enough time the oscillations die out and you are left with the
equilibrium solution x = Fy/k.

Look at point 4 above: For small 3 the 32 terms in Eq. (4.15) are small compared to the 3 terms to which they
are added or subtracted. The numerators of the terms with e® are then proportional to 3. The denominator of the
same terms has a k—bf3 in it. That means that as § — 0, the numerator of the homogeneous term approaches zero and
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its denominator doesn't. The last terms, that came from the inhomogeneous part, don't have any [ in the numerator
so they don't vanish in this limit. The approximate final result then comes solely from the i (¢) term.

x(t) ~ FO%(l —e P

It doesn’t oscillate at all and just gradually moves from equilibrium to equilibrium as time goes on. It's what you get if
you go back to the differential equation (4.12) and say that the acceleration and the velocity are negligible.

d?*z dx 1
The spring force nearly balances the external force at all times; this is “quasi-static,” in which the external force is turned
on so slowly that it doesn't cause any oscillations.

4.3 Series Solutions
A linear, second order differential equation can always be rearranged into the form

y'+ P(@)y + Qx)y = R(x) (4.17)

If at some point xg the functions P and () are well-behaved, if they have convergent power series expansions about g,
then this point is called a “regular point” and you can expect good behavior of the solutions there — at least if R is
also regular there.

I'll look just at the case for which the inhomogeneous term R = 0. If P or () has a singularity at ¢, perhaps
something such as 1/(x — xg) or \/T — o, then x is called a “singular point” of the differential equation.

Regular Singular Points
The most important special case of a singular point is the “regular singular point” for which the behaviors of P and )
are not too bad. Specifically this requires that (z — x¢) P(z) and (z — 20)2Q(x) have no singularity at . For example

1 1 1
y”+5y’+ﬁy=0 and y”+ﬁy’+xy:0

have singular points at = 0, but the first one is a regular singular point and the second one is not. The importance of
a regular singular point is that there is a procedure guaranteed to find a solution near a regular singular point (Frobenius
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series). For the more general singular point there is no guaranteed procedure (though there are a few tricks* that
sometimes work).
Examples of equations that show up in physics problems are

y'+y=0
(1 -2y — 22y + L+ 1)y =0 regular singular points at +1 (4.18)
22y + oy + (22 —n*)y =0 regular singular point at zero .

2y +(a+1—2)y +ny=0 regular singular point at zero

These are respectively the classical simple harmonic oscillator, Legendre equation, Bessel equation, generalized Laguerre
equation.

A standard procedure to solve these equations is to use series solutions, but not just the standard power series
such as those in Eq. (2.4). Essentially, you assume that there is a solution in the form of an infinite series and you
systematically compute the terms of the series. I'll pick the Bessel equation from the above examples, as the other three
equations are done the same way. The parameter n in that equation is often an integer, but it can be anything. It's
common for it to be 1/> or 3/» or sometimes even imaginary, but there’s no need to make any assumptions about it for
now.

Assume a solution in the form :

Frobenius Series: y(z) = Z apxhts (ag #0) (4.19)
0

If s =0 or a positive integer, this is just the standard Taylor series you saw so much of in chapter two, but this simple-
looking extension makes it much more flexible and suited for differential equations. It often happens that s is a fraction
or negative, but this case is no harder to handle than the Taylor series. For example, what is the series expansion of
(cosx)/x about the origin? This is singular at zero, but it's easy to write the answer anyway because you already know

the series for the cosine.

3 5

cosx_l x+x x n
xr x 2 24 72
-1

It starts with the term 1/x corresponding to s =

in the Frobenius series.

* The book by Bender and Orszag: “Advanced mathematical methods for scientists and engineers” is a very readable
source for this and many other topics.
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Always assume that ag # 0, because that just defines the coefficient of the most negative power, x%. If you allow
it be zero, that's just the same as redefining s and it gains nothing except confusion. Plug this into the Bessel differential
equation.

$2y” + :Ey’ + (ZL'2 o n2)y =0

oo 0o oo
xQZak(k—i—s)(/ﬂ—l—s—1)xk+5_2+x2ak(k+s):ck+3_l+(x2—n2)2akxk+5 —0
k=0 k=0 k=0

o0 00 oo ~
S aph+ s)(k 5 — DI+ ag(h+ )0t + 3 a2 - 02 Y apakts = 0
0

k=0 k=0 k=0
o0 [e.e]
Z ap[(k+8)(k+5—1) + (k + s) — n?] 2" + Zakzk+5+2 =0
k=0 k=0
The coefficients of all the like powers of £ must match, and in order to work out the matches efficiently, and so as not
to get myself confused in a mess of indices, I'll make an explicit change of the index in the sums. Do this trick every

time. It keeps you out of trouble.
Let £ = k in the first sum. Let £ = k + 2 in the second. Explicitly show the limits of the index on the sums, or
you're bound to get it wrong.

o o
Z ag[( + 5)% = n?at*s + Z ap_pxtts =0
{=0 (=2

The lowest power of x in this equation comes from the £ = 0 term in the first sum. That coefficient of 2% must vanish.

(ap # 0)

ap[s® —n? =0 (4.20)

This is called the indicial equation. It determines s, or in this case, maybe two s's. After this, set to zero the coefficient
of zt+s.

ag[(l+s)*—n*l+a;5=0 (4.21)
This determines as in terms of ag; it determines a4 in terms of ay etc.

1
aZ:—ag72(€—'_S)—2_n/2, 622, 4,
For example, if n = 0, the indicial equation says s = 0.
1 1 1 1 1
as = —dayo a4y = —Q2—— = +Qg ag = —ay4

22 12 9242’ 62 105242
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1 2
CLQk = (—l)kQOW then = Qg Z x/ - CLOJO(I) (422)

and in the last equation | rearranged the factors and used the standard notation for the Bessel function, J, ().

This is a second order differential equation. What about the other solution? This Frobenius series method is
guaranteed to find one solution near a regular singular point. Sometimes it gives both but not always, and in this
example it produces only one. There are procedures that will let you find the second solution to this sort of second order
differential equation. See problem 4.49 for one such method.

For the case n = 1/5 the calculations just above will produce two solutions. The indicial equation gives s = +1/5.
After that, the recursion relation for the coefficients give

1 1 1 1
W= U2 gy g2 T T2 s T Mgy os) T 20 1)

For the s = +1/5 result

s = —ag— (s = —ay— = +a !

2T 093 RS P PE R N

1
This solution is then ) .
2
y(a:):aoxl/2 [1—3'—1-—...]

This series looks suspiciously like the series for the sine function, but is has some of the x's or some of the factorials in
the wrong place. You can fix that if you multiply the series in brackets by x. You then have

x> b ] Osinx (4.23)

I'll leave it to problem 4.15 for you to find the other solution.

Do you need to use a Frobenius series instead of just a power series for all differential equations? No, but |
recommend it. If you are expanding about a regular point of the equation then a power series will work, but | find it
more systematic to use the same method for all cases. It's less prone to error.
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4.4 Some General Methods
It is important to be familiar with the arsenal of special methods that work on special types of differential equations.
What if you encounter an equation that doesn’t fit these special methods? There are some techniques that you should
be familiar with, even if they are mostly not ones that you will want to use often. Here are a couple of methods that can
get you started, and there's a much broader set of approaches under the heading of numerical analysis; you can explore
those in section 11.5.

If you have a first order differential equation, dx/dt = f(x,t), with initial condition x(fy) = xo then you can
follow the spirit of the series method, computing successive orders in the expansion. Assume for now that the function
f is smooth, with as many derivatives as you want, then use the chain rule a lot to get the higher derivatives of x

2
I = ftt + 2fmtj7 + f:zcacjf2 + fxaf = ftt =+ 2f:rtj3 + fmxjf? + fx[ft + fxl’]

T(t) = xo + [ (w0, to)(t — to) + 2F(to)(t — to)? + L3 (to)x(to)(t — to)® + - (4.24)

Here the dot-notation (& etc.) is a standard shorthand for derivative with respect to time. This is unlike using a prime

for derivative, which is with respect to anything you want. These equations show that once you have the initial data

(to, To), you can compute the next derivatives from them and from the properties of f. Of course if f is complicated this

will quickly become a mess, but even then it can be useful to compute the first few terms in the power series expansion

of .
For example, & = f(z,t) = Az?(1 + wt) with to = 0 and 29 = .

By = Ao, Fo = Ao’tw + 2A%a3, io = 4A%Pw +2A%0" + 2Aa[Ac’w + 24207 (4.25)
If A=1/m-sand w=1/s with &« = 1 m this is
z(t)=1+t+32+2t> + -

You can also solve this example exactly and compare the results to check the method.
What if you have a second order differential equation? Pretty much the same thing, though it is sometimes
convenient to make a slight change in the appearance of the equations when you do this.

¥ = f(z,2,1) can be written T=wv, 0= f(x,v,1) (4.26)
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so that it looks like two simultaneous first order equations. Either form will let you compute the higher derivatives, but
the second one often makes for a less cumbersome notation. You start by knowing tg, g, and now vy = Zg.

Some of the numerical methods you will find in chapter 11 start from the ideas of these expansions, but then
develop them along different lines.

There is an iterative methods that of more theoretical than practical importance, but it's easy to understand. Ill
write it for a first order equation, but you can rewrite it for the second (or higher) order case by doing the same thing
as in Eq. (4.26).

t
T = f(x,t) with x(tp) =xo  generates  x1(t)= [ dt’ f(xo,t)
to

This is not a solution of the differential equation, but it forms the starting point to find one because you can iterate this
approximate solution x1 to form an improved approximation.

xp(t) = ttdt’f(xk_l(t’),t’), k=23, ... (4.27)

This will form a sequence that is usually different from that of the power series approach, though the end result better
be the same. This iterative approach is used in one proof that shows under just what circumstances this differential
equation @& = f has a unique solution.

4.5 Trigonometry via ODE’s

The differential equation u” = —u has two independent solutions. The point of this exercise is to derive all (or at least

some) of the standard relationships for sines and cosines strictly from the differential equation. The reasons for spending

some time on this are twofold. First, it's neat. Second, you have to get used to manipulating a differential equation in

order to find properties of its solutions. This is essential in the study of Fourier series as you will see in section 5.3.
Two solutions can be defined when you specify boundary conditions. Call the functions c¢(x) and s(x), and specify

their respective boundary conditions to be

c(0)=1, d(0)=0, and s(0)=0, §(0)=1 (4.28)
What is s'(x)? First observe that s’ satisfies the same differential equation as s and c:

u'=—-u = W) =" =-u, and that shows the desired result.
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This in turn implies that s’ is a linear combination of s and ¢, as that is the most general solution to the original
differential equation.
§'(xr) = Ac(x) + Bs(x)

Use the boundary conditions:

s'(0) =1= Ac(0) + Bs(0) = A
From the differential equation you also have
s"(0) = —s(0) = 0= Ad(0) + Bs'(0) = B
Put these together and you have
s'(x) = e(x) And a similar calculation shows — /(z) = —s(x) (4.29)
What is ¢(z)? + s(x)?? Differentiate this expression to get

d
@[c(:zj)2 + 5(2)?] = 2¢(x)d (x) + 25(2)s' (x) = —2¢(x)s(x) + 25(x)c(z) = 0

This combination is therefore a constant. What constant? Just evaluate it at x = 0 and you see that the constant is
one. There are many more such results that you can derive, but that's left for the exercises, problem 4.21 et seq.

4.6 Green’'s Functions
Is there a general way to find the solution to the whole harmonic oscillator inhomogeneous differential equation? One
that does not require guessing the form of the solution and applying initial conditions? Yes there is. It's called the
method of Green's functions. The idea behind it is that you can think of any force as a sequence of short, small kicks.
In fact, because of the atomic nature of matter, that's not so far from the truth. If you can figure out the result of an
impact by one molecule, you can add the results of many such kicks to get the answer for 102> molecules.

I'll start with the simpler case where there's no damping, b = 0 in the harmonic oscillator equation.

mI + kx = Fe(t) (4.30)

Suppose that everything is at rest at the origin and then at time ¢’ the external force provides a small impulse. The
motion from that point on will be a sine function starting at t/,

Asin (wo(t — ) (t >t (4.31)
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The amplitude will depend on the strength of the kick. A constant force F' applied for a very short time, At’, will change
the momentum of the mass by mAwv, = F'At’. If this time interval is short enough the mass doesn’t have a chance to
move very far before the force is turned off, then from that time on it's subject only to the —kx force. This kick gives
m a velocity F'At'/m, and that’s what determines the unknown constant A.

Just after t = t/, vy = Awg = FAt'/m. This determines A, so the position of m is

FAY - / /

_ mwgsm(w(t—t)) (t > 1)

(t) = {0 - oI o (4.32)
Impulse

AN
y A D

When the external force is the sum of two terms, the total solution is the sum of the solutions for the individual
forces. If an impulse at one time gives a solution Eq. (4.32), an impulse at a later time gives a solution that starts its
motion at that later time. The key fact about the equation that you're trying to solve is that it is linear, so you can get
the solution for two impulses simply by adding the two simpler solutions.

d2l’1 d2$2

mW + kxy = Fl(t) and mW + kxy = Fg(t)

then

mdQ(xl + 232)
dit?

+ ]i](l‘l —l—l’g) = Fl(t) + Fg(t)
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The way to make use of this picture is to take a sequence of contiguous steps. One step follows immediately after
the preceding one. If two such impulses are two steps

B F(to) (t() <t< t1) B F(tl) (tl <t < tg)
Fo = { 0 (elsewhere) and Fi= 0 (elsewhere)
mi + kx = Fy+ F (4.33)

then if ¢ is the solution to Eq. (4.30) with only the F{ on its right, and z; is the solution with only F7}, then the full
solution to Eq. (4.33) is the sum, z¢ + ;.

Think of a general forcing function I} eyt (%) in the way that you would set up an integral. Approximate it as a
sequence of very short steps as in the picture. Between ?; and tj . the force is essentially ['({;). The response of m
to this piece of the total force is then Eq. (4.32).

() = { POOA sin (wo(t — 1)) (t > ty,)
0 (t <tp)

where Atk = tk+1 — tk-
F
N + + + +

AN

To complete this idea, the external force is the sum of a lot of terms, the force between t; and 5, that between
to and t3 etc. The total response is the sum of all these individual responses.

F(ty)At, -
(1) = —i e sin (wo(t —1g))  (t > tg)
(t) Xk: { . (wolt = 1x)) 2

For a specified time ¢, only the times ¢}, before and up to ¢ contribute to this sum. The impulses occurring at the times
after the time ¢ can't change the value of z(%); they haven't happened yet. In the limit that Aty — 0, this sum becomes
an integral.

t /
x(t) = /_ N dt’l;((io)sin (wo(t — 1)) (4.34)
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Apply this to an example. The simplest is to start at rest and begin applying a constant force from time zero on.

. F() (t > 0) . ¢ , Fo . ,
Fou(t) = {o (t < 0) z(t) = i dt —— (wo(t — 1))
and the last expression applies only for ¢ > 0. It is
Fy
t) = 1-— t 4.35
o(t) = o 11— cos(int)] (4.35)

As a check for the plausibility of this result, look at the special case of small times. Use the power series expansion of
the cosine, keeping a couple of terms, to get

FO w%tQ B FO t2
mwg 2 m 2

F°2 [1— (1 - (wot)?/2)] =

t) ~
o)~ ok

and this is just the result you'd get for constant acceleration Fy/m. In this short time, the position hasn't changed
much from zero, so the spring hasn’t had a chance to stretch very far, so it can’t apply much force, and you have nearly
constant acceleration.

This is a sufficiently important subject that it will be repeated elsewhere in this text. A completely different
approach to Green's functions will appear is in section 15.5, and chapter 17 is largely devoted to the subject.

4.7 Separation of Variables
If you have a first order differential equation — I'll be more specific for an example, in terms of z and { — and if you
are able to move the variables around until everything involving  and dx is on one side of the equation and everything
involving t and dt is on the other side, then you have “separated variables.” Now all you have to do is integrate.

For example, the total energy in the undamped harmonic oscillator is ' = mv?/2 + kx?/2. Solve for dx/dt and

W 2B kep) (1.3

To separate variables, multiply by dt and divide by the right-hand side.

dx
Vi (B~ ka?)2)

=dt
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Now it’s just manipulation to put this into a convenient form to integrate.

m—dx = dt, or /dw = / \/ Edzf
V & V@E/k) — 22 V(2E k) — x? m
Make the substitution x = asinf and you see that if a®> = 2E/k then the integral on the left simplifies.
acosf df / [ k .1
—— = —dt so 0 =sin"" — =wot+C
/ av/1 —sin? 6 m a ’
or  z(t)=asin(wot + C)  where  wo=/k/m

An electric circuit with an inductor, a resistor, and a battery has a differential equation for the current flow:

dal
L% +IR=V (4.37)
Manipulate this into
dl dl
Now integrate this to get
dl L
L/M=t+c, o~ (V- IR)=t+C
Solve for the current [ to get
RI(t) = Vy — e~ (L/R)(E+O) (4.38)

Now does this make sense? Look at the dimensions and you see that it doesn't, at least not yet. The problem is the
logarithm on the preceding line where you see that its units don't make sense either. How can this be? The differential
equation that you started with is correct, so how did the units get messed up? It goes back to the standard equation for
integration,

/d:c/lenx—i—C
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If  is a length for example, then the left side is dimensionless, but this right side is the logarithm of a length. It's a
peculiarity of the logarithm that leads to this anomaly. You can write the constant of integration as C' = —In C” where
(" is another arbitrary constant, then

/dx/x:lnx—l—C’:lnx—lnC':lngq

If C" is a length this is perfectly sensible dimensionally. To see that the dimensions in Eq. (4.38) will work themselves
out (this time), put on some initial conditions. Set /(0) = 0 so that the circuit starts with zero current.

R-0="Vy— e @T/BO+O)  jplies o~ E/RO) 1

RI(t)=Vy—Voe /B or  T(t)=(1—e BV, /R

and somehow the units have worked themselves out. Logarithms do this, but you still better check. The current in the
circuit starts at zero and climbs gradually to its final value I = Vj/R.

4.8 Circuits

The methods of section 4.1 apply to simple linear circuits, and the use of complex algebra as in that section leads to
powerful and simple ways to manipulate such circuit equations. You probably remember the result of putting two resistors
in series or in parallel, but what about combinations of capacitors or inductors under the same circumstances? And what
if you have some of each? With the right tools, all of these questions become the same question, so it's not several
different techniques, but one.

If you have an oscillating voltage source (a wall plug), and you apply it to a resistor or to a capacitor or to an
inductor, what happens? In the first case, V = [ R of course, but what about the others? The voltage equation for a
capacitor is V' = ¢/C' and for an inductor it is V' = LdI /dt. A voltage that oscillates at frequency w is V' = V{ cos wt,
but using this trigonometric function forgoes all the advantages that complex exponentials provide. Instead, assume that
your voltage source is V = Vpe™! with the real part understood. Carry this exponential through the calculation, and
take the real part only at the end — often you won't even need to do that.
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These are respectively _ '
Vbezwt —JR = [Oezth

Vet = q/C = iwVpe! = ¢/C =1/C = Ipe™!/C
Vot = [T = iwLI = iwLIye™!

In each case the exponential factor is in common, and you can cancel it. These equations are then
V=IR V =1/iwC V =1iwLl

All three of these have the same form: V' = (something times)/, and in each case the size of the current is proportional
to the applied voltage. The factors of ¢ implies that in the second and third cases the current is £90° out of phase with
the voltage cycle.

The coefficients in these equations generalize the concept of resistance, and they are called “impedance,” respec-
tively resistive impedance, capacitive impedance, and inductive impedance.

V =Zpl =RI V=Zcl = %I V=21 =iwll (4.39)

Impedance appears in the same place as does resistance in the direct current situation, and this implies that it can be
manipulated in the same way. The left figure shows two impedances in series.

e P ==

I —

The total voltage from left to right in the left picture is
V =211+ Zo] = (21 + Zo)] = Zyoral (4.40)

It doesn’'t matter if what's inside the box is a resistor or some more complicated impedance, it matters only that each
box obeys V' = ZI and that the total voltage from left to right is the sum of the two voltages. Impedances in series
add. You don't need the common factor e

For the second picture, for which the components are in parallel, the voltage is the same on each impedance and
charge is conserved, so the current entering the circuit obeys

V Vv Vv 1 1 1

I1=15+1I, then =4 — = 4
b Ziotal 21 Zy Tnotal 21 Zy

(4.41)
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Impedances in parallel add as reciprocals, so both of these formulas generalize the common equations for resistors in
series and parallel. They also include as a special case the formula you may have seen before for adding capacitors in
series and parallel.

In the example Eq. (4.37), if you replace the constant voltage by an oscillating voltage, you have two impedances
in series.

Zww = Zp+ 7 = R+iwl = I=V/(R+iwL)

What happened to the e~Lt/R term of the previous solution? This impedance manipulation tells you the inhomogeneous
solution; you still must solve the homogeneous part of the differential equation and add that.

LCZ +IR=0 = I(t)= Ae Bt/L

The total solution is the sum

I(t) = Ae= B/ 4 Vyeiet

R4 iwL
real part = Ae Ft/L 4 %\C/H where ¢ =tan™! ag, (4.42)
w

How did that last manipulation come about? Change the complex number R+twL in the denominator from rectangular
to polar form. Then the division of the complex numbers becomes easy. The dying exponential is called the “transient”
term, and the other term is the “steady-state” term.

The denominator is
Va2 + (2

R+iwL=a+if=+ao?+ BQO‘% (4.43) B |-emegrreeeea

The reason for this multiplication and division by the same factor is that it makes the |
final fraction have magnitude one. That allows me to write it as an exponential, €.
From the picture, the cosine and the sine of the angle ¢ are the two terms in the fraction.

a+if=+va2+ 2 (cosp+ising) =+1/a2+ B2  and  tanod = f/a
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In summary,

VZIZ—>1:K—>Z:|Zyei¢—>J: L
Z VRZ +w2L2ei¢

To satisfy initial conditions, you need the parameter A, but you also see that it gives a dying exponential. After
some time this transient term will be negligible, and only the oscillating steady-state term is left. That is what this
impedance idea provides.

In even the simplest circuits such as these, that fact that Z is complex implies that the applied voltage is out of
phase with the current. Z = |Z|e!?, so I = V/Z has a phase change of —¢ from V.

What if you have more than one voltage source, perhaps the second having a different frequency from the first?
Remember that you're just solving an inhomogeneous differential equation, and you are using the methods of section
4.2. If the external force in Eq. (4.12) has two terms, you can handle them separately then add the results.

4.9 Simultaneous Equations
What's this doing in a chapter on differential equations? Patience. Solve two equations in two unknowns:
X by = dx + bdy — bcx — bdy = ed — fb
(X)ax+by=e dx (X) — bx(Y): adx + bdy — bex y=ed—f
Y)cx+dy=f (ad — bc)x = ed — fb
Similarly, multiply (Y) by a and (X) by ¢ and subtract:
acr + ady — acx — cby = fa — ec
(ad — bc)y = fa —ec
Divide by the factor on the left side and you have
ed — fb fa—ec
T ad = be’ Y= ad=bc
provided that ad — bc # 0. This expression appearing in both denominators is the determinant of the equations.

Classify all the essentially different cases that can occur with this simple-looking set of equations and draw graphs
to illustrate them. If this looks like problem 1.23, it should.

Y \y y/
N COONN / .
/i 7

(4.44)

3a.



4—Differential Equations 112

1. The solution is just as in Eq. (4.44) above and nothing goes wrong. There is exactly one solution. The two
graphs of the two equations are two intersecting straight lines.

2. The denominator, the determinant, is zero and the numerator isn't. This is impossible and there are no
solutions. When the determinant vanishes, the two straight lines are parallel and the fact that the numerator isn't zero
implies that the two lines are distinct and never intersect. (This could also happen if in one of the equations, say (X),
a=0b=0and e # 0. For example 0 = 1. This obviously makes no sense.)

3a. The determinant is zero and so are both numerators. In this case the two lines are not only parallel, they are
the same line. The two equations are not really independent and you have an infinite number of solutions.

3b. You can get zero over zero another way. Both equations (X) and (Y) are 0 = 0. This sounds trivial, but it
can really happen. Every x and y will satisfy the equation.

4. Not strictly a different case, but sufficiently important to discuss it separately: suppose that the right-hand
sides of (X) and (Y) are zero, e = f = 0. If the determinant is non-zero, there is a unique solution and it is z = 0,
y=0.

5. With e = f =0, if the determinant is zero, the two equations are the same equation and there are an infinite
number of non-zero solutions.

In the important case for which e = f = 0 and the determinant is zero, there are two cases: (3b) and (5). In
the latter case there is a one-parameter family of solutions and in the former case there is a two-parameter family. Put
another way, for case (5) the set of all solutions is a straight line, a one-dimensional set. For case (3b) the set of all
solutions is the whole plane, a two-dimensional set.

Y Y Y

| A

4. 5. 3b.

Example: consider the two equations
kx + (k—1)y =0, (1—k)x+(k—1)>2%y=0

For whatever reason, | would like to get a non-zero solution for z and ¢y. Can |17 The condition depends on the determinant,
so take the determinant and set it equal to zero.

k(k—12—-Q-k)(k-1)=0, o (k+1(k-172=0
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There are two roots, k = —1 and £ = +1. In the kK = —1 case the two equations become
—r —2y =0, and 20 +4y =0

The second is just —2 times the first, so it isn't a separate equation. The family of solutions is all those x and ¥ satisfying
T = —2y, a straight line.
In the k = +1 case you have
r+0y =0, and 0=0

The solution to this is z = 0 and y = anything and it is again a straight line (the y-axis).

4.10 Simultaneous ODE’s

Single point masses are an idealization that has some application to the real world, but there are many more cases for
which you need to consider the interactions among many masses. To approach this, take the first step, from one mass
to two masses.

1 ks ko
0900019999090,
L> L>

Z1 X2

Two masses are connected to a set of springs and fastened between two rigid walls as shown. The coordinates for
the two masses (moving along a straight line) are x; and x3, and I'll pick the zero point for these coordinates to be the
positions at which everything is at equilibrium — no total force on either. When a mass moves away from its equilibrium
position there is a force on it. On my, the two forces are proportional to the distance by which the two springs k; and
ks are stretched. These two distances are x1 and x1 — a2 respectively, so F, = ma, applied to each mass gives the
equations

2 2
mlddta;l = —k;lxl — ]{?3(.1’1 — 112), and WLQddtx; = —]{/‘ng — kg([)?g — 171) (4.45)
I'm neglecting friction simply to keep the algebra down. These are linear, constant coefficient, homogeneous equations,
just the same sort as Eq. (4.4) except that there are two of them. What made the solution of (4.4) easy is that the
derivative of an exponential is an exponential, so that when you substituted x(t) = Ae® all that you were left with was
an algebraic factor — a quadratic equation in «. Exactly the same method works here.

The only way to find out if this is true is to try it. The big difference is that there are two unknowns instead of
one, and the amplitude of the two motions will probably not be the same. If one mass is a lot bigger than the other, you
expect it to move less.
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Try the solution
r1(t) = Ae™, 1o(t) = Be™ (4.46)

When you plug this into the differential equations for the masses, all the factors of e®* cancel, just the way it happens
in the one variable case.

mialA = —k A — ks(A — B), and Mmoo B = —ky B — k3(B — A) (4.47)
Rearrange these to put them into a neater form.
(k1+k3+m10(2)14+ (—k‘3)B:O
(—k3)A+ (ka4 ks+mea?)B =0 (4.48)

The results of problem 1.23 and of section 4.9 tell you all about such equations. In particular, for the pair of
equations ax + by = 0 and cx + dy = 0, the only way to have a non-zero solution for x and y is for the determinant
of the coefficients to be zero: ad — bc = 0. Apply this result to the problem at hand. Either A =0 and B = 0 with a
trivial solution or the determinant is zero.

(lﬁ + k3 + mlozz) (kg + k3 + mgOéz) — (kg)Q =0 (4.49)

This is a quadratic equation for a2, and it determines the frequencies of the oscillation. Note the plural in the word
frequencies.

Equation (4.49) is just a quadratic, but it's still messy. For a first example, try a special, symmetric case:
mi = mo =m and k; = ky. There's a lot less algebra.

(k1 + ks +ma?)® — (ks3)* = 0 (4.50)
You could use the quadratic formula on this, but why? It's already set up to be factored.
(k1 + ks + ma?® — k3)(ky + ks + ma? + k3) =0
The product is zero, so one or the other factors is zero. These determine the as.

k ki + 2k

L A D (4.51)
m m

These are negative, and that's what you should expect. There's no damping and the springs provide restoring forces that

should give oscillations. That's just what these imaginary a's provide.
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When you examine the equations ax + by = 0 and cx + dy = 0 the condition that the determinant vanishes is the
condition that the two equations are really just one equation, and that the other is not independent of it; it is actually a
multiple of the first. You must solve that equation for x and y. Here, arbitrarily pick the first of the equations (4.48)
and find the relation between A and B.

2= M kst m(—(a/m)A+ (—k)B=0 — B=A4A

a3 =

(k:1+k:3+m(—(k1+2k3/m)))A+(—krg)B:O = B=-A

For the first case, ay = Ltiw; = :ti\/kl/m, there are two solutions to the original differential equations. These are

called "normal modes.” ) .
x1(t) = Ajetrt J 11(t) = Age 1!
an

l’g(t) = Aleiwlt £C2<t) = A2€—iw1t

The other frequency has the corresponding solutions

$1(t) = Ageiwﬂ q 331(t) = A4€_iw2t
. an .
$Q(t) = —1438“")226 Cl32<t) = —A4€_w)2t

The total solution to the differential equations is the sum of all four of these.

Il(t) :Aleiw1t+A2€—iw1t+A3€int+A4e—iw2t
To(t) = Apetrt 4 Agemint _ Ageiwal _ A emiwat (4.52)

The two second order differential equations have four arbitrary constants in their solution. You can specify the
initial values of two positions and of two velocities this way. As a specific example suppose that all initial velocities are
zero and that the first mass is pushed to coordinate x(y and released.

11(0) =m0 = A1 + As + Az + Ay
0:A1+A2—A3—A4

0= iwlAl — iwlAg + ingg — iw2A4
0

= iw1A1 — iwlAg — iWQA3 + dwo Ay (4.53)

<
8
—_
~—~
=
— — —
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With a little thought (i.e. don't plunge blindly ahead) you can solve these easily.

T
m:m:@:@:f
x() iw1t —iwlt iWQt —iWQt 'TO
SUl(t)Zz[e +e +e +e ] :?[coswlt—i-coswgﬂ
To(t) = ZO [ewlt 4 et _ giwat e*“’”t} = ?0 [ coswit — coswat]

From the results of problem 3.34, you can rewrite these as

21(t) = x cos w2+ wlt cos w2~ wlt
2 2
. w2 + Wi . Wy — W1
2o(t) = xosin ( 5 t) sin ( 5 t)

116

(4.54)

As usual you have to draw some graphs to understand what these imply. If the center spring k3 is a lot weaker
than the outer ones, then Eq. (4.51) implies that the two frequencies are close to each other and so |w; —wa| K w1 +wa.
Examine Eq. (4.54) and you see that one of the two oscillating factors oscillate at a much higher frequency than the
other. To sketch the graph of x5 for example you should draw one factor [sin ((wg + wl)t/Z)} and the other factor

[sin ((w2 — w1)t/2)] and graphically multiply them.

AN A
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The mass my starts without motion and its oscillations gradually build up. Later they die down and build up
again (though with reversed phase). Look at the other mass, governed by the equation for x1(¢) and you see that the
low frequency oscillation from the (wy — wy)/2 part is big where the one for x5 is small and vice versa. The oscillation

energy moves back and forth from one mass to the other.
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4.11 Legendre’s Equation

This equation and its solutions appear when you solve electric and gravitational potential problems in spherical coordinates
[problem 9.20]. They appear when you study Gauss's method of numerical integration [Eq. (11.27)] and they appear
when you analyze orthogonal functions [problem 6.7]. Because it shows up so often it is worth the time to go through
the details in solving it.

[(1-2*)y] +Cy=0, or  (1—a2?)y" —2xy +Cy=0 (4.55)
Assume a Frobenius solutions about x =0

oo
y = Z &kxk—i—s
0

and substitute into (4.55). Could you use an ordinary Taylor series instead? Yes, the point z = 0 is not a singular point
at all, but it is just as easy (and more systematic and less prone to error) to use the same method in all cases.

(1—2?) Z ap(k + 8)(k+ s — 1)zk+s=2 - 21:2 ap(k + s)xFts1 4 CZ apakts =0
0 0 0

S apk+s)(k+s -2 24> "ap[ =20k +5) — (k+s)(k+s—D]a" 4+ CY apaf =0
0 0 0

Y ansz(nts+2)(n+s+ 12" = an[(n+5)* + (04 9)]2" T+ C Y ana™ =0

n=—2 n=0 n=0

In the last equation you see the usual substitution k = n + 2 for the first sum and k& = n for the rest. That makes the
exponents match across the equation. In the process, | simplified some of the algebraic expressions.
The indicial equation comes from the n = —2 term, which appears only once.

aps(s —1) =0, so s=0,1

Now set the coefficient of 2™ to zero, and solve for a, 2 in terms of a,,. Also note that s is a non-negative integer,
which says that the solution is non-singular at x = 0, consistent with the fact that zero is a regular point of the differential
equation.
nm+s)(n+s+1)-C
Upy2 = Gn
m+s+2)(n+s+1)

(4.56)
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s(s+1)—-C (s+2)(s+3)-C
(s+2)(s+1)’ (s+4)(s+3)
This looks messier than it is. Notice that the only combination of indices that shows up is n + s. The index s is 0 or 1,

and n is an even number, so the combination n 4 s covers the non-negative integers: 0, 1, 2, ...
The two solutions to the Legendre differential equation come from the two cases, s =0, 1.

o e () (57) (B17) () (F0) (5657)
2 2 4.3 2 4-3 6-5
ot e (V) (120) (342CY e )
3-2 3:2 5:4
and the general solution is a sum of these.
This procedure gives both solutions to the differential equation, one with even powers and one with odd powers.

Both are infinite series and are called Legendre Functions. An important point about both of them is that they blow up
as * — £1. This fact shouldn't be too surprising, because the differential equation (4.55) has a singular point there.

then as, = a9

as = Qg etc. (4.57)

(4.58)

y 2x C

Vodroa oY Taroa s

7y =0 (4.59)

It's a regular singular point, but it is still singular. A detailed calculation in the next section shows that these solutions
behave as In(1 — ) near x = 1.
There is an exception! If the constant C' is for example C' = 6, then with s = 0 the equations (4.57) are

—6 6—6
CL2=CL0?> a4 = Q2 1

:0, agzag:...:o
The infinite series terminates in a polynomial
ap + asx® = ag[l — 327

This (after a conventional rearrangement) is a Legendre Polynomial,

3 1
P2($):§x2—§
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The numerator in Eq. (4.56) for a2 is [(n + s)(n+ s+ 1) — C]. If this happen to equal zero for some value of
n = N, then ay,o = 0 and so then all the rest of an . ..are zero too. The series is a polynomial. This will happen
only for special values of C, such as the value C' = 6 above. The values of C' that have this special property are

C=(l+1), for (=0,1,2, ... (4.60)

This may be easier to see in the explicit representation, Eq. (4.58). When a numerator equals zero, all the rest that
follow are zero too. When C' = ¢({ + 1) for even /¢, the first series terminates in a polynomial. Similarly for odd ¢ the
second series is a polynomial. These are the Legendre polynomials, denoted Fy(x), and the conventional normalization
is to require that their value at £ =1 is one.

Pyx)=1 Pi(z)=2 Pyz)=32"-1
— 5.3 _3 35 .4 30,2, 3 (4.61)
Py(x)=52° -5 Py(r) =% x S T+ 3

The special case for which the series terminates in a polynomial is by far the most commonly used solution to Legendre's
equation. You seldom encounter the general solutions as in Eq. (4.58).
A few properties of the P, are

(a) / dz: Po(2) P () = m2+15”m where G = {(1) o o

(b) (n+1)Ppi1(z) = (2n + 1)z Py () — nPy1(z)

(© e (1.62)
(d) Po(1)=1  Py(—z) = (-1)"Pu(z)

(€) (1—2tw+t2) = Z £ P (

4.12 Asymptotic Behavior

This is a slightly technical subject, but it will come up occasionally in electromagnetism when you dig into the details
of boundary value problems. It will come up in quantum mechanics when you solve some of the standard eigenvalue
problems that you face near the beginning of the subject. If you haven't come to these yet then you can skip this part
for now.
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You solve a differential equation using a Frobenius series and now you need to know something about the solution.
In particular, how does the solution behave for large values of the argument? All you have in front of you is an infinite
series, and it isn't obvious how it will behave far away from the origin. In the line just after Eq. (4.59) it says that these
Legendre functions behave as In(1 — ). How can you tell this from the series in Eq. (4.58)7?

There is a theorem that addresses this. Take two functions described by two series:

oo o
k k
flx) = Zakx and g(x) = Zbkx
It does not matter where the sums start because you are concerned just with the large values of k. The lower limit could

as easily be —14 or +27 with no change in the result. The ratio test, Eq. (2.8), will determine the radius of convergence

of these series, and
k+1
Apyq 2T

— | <C <1 forlarge enough k
apx

is enough to insure convergence. The largest = for which this holds defines the radius of convergence, maybe 1, maybe
oo.... Callit R.
Assume that (after some value of k) all the a; and by, are positive, then look at the ratio of the ratios,

Qky1/

bg41/bk
If this approaches one, that will tell you only that the radii of convergence of the two series are the same. If it approaches
one very fast, and if either one of the functions goes to infinity as  approaches the radius of convergence, then it says
that the asymptotic behaviors of the functions defined by the series are the same.

1
If M —1-—0 asfastas -5, and if either f(x) or g(x) — ocasz — R
bgt1/br k
Then J(z) — aconstantas r — R
9()

There are more general ways to state this, but this handles most cases of interest.
Compare these series near x = 1.

z or In(1 —x) 22%7 or
1
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Even in the third case, the signs of the terms are the same after a while, so this is relevant to the current discussion.
The ratio of ratios for the first and second series is

Apyr/0k 1 1 1

pr— :1—— .« e
bt /bn  (kt1)/k  111/k BT

These series behave differently as & approaches the radius of convergence (z — 1). But you knew that. The point is to
compare an unknown series to a known one.

Applying this theorem requires some fussy attention to detail. You must make sure that the indices in one series
correspond exactly to the indices in the other. Take the Legendre series, Eq. (4.56) and compare it to a logarithmic
series. Choose s = 0 to be specific; then only even powers of x appear. That means that | want to compare it to a
series with even powers, and with radius of convergence = 1. First try a binomial series such as for (1 — 22)%, but that
doesn't work. See for yourself. The logarithm In(1 — z2) turns out to be right. From Eq. (4.56) and from the logarithm
series,

e n . _ (n+s)n+s+1)-C
flx) = n%;n an with Gnao = Qp, MtstDmtstD)

To make the indices match, let n = 2k in the second series.

o) = Y = Yo"

T, even

Now look at the ratios.

anyz  nn+1)—C 1++-6 2

= e 3 5 :1-—-’—...
Cn+2_2/(n+2)_ n 1 _1_2_’_...
Cn 2/n n+2 1+2 n

These agree to order 1/n, so the ratio of the ratios differs from one only in order 1/n?, satisfying the requirements
of the test. This says that the Legendre functions (the ones where the series does not terminate in a polynomial) are
logarithmically infinite near x = 1. It's a mild infinity, but it is still an infinity. Is this bad? Not by itself, after all the
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electric potential of a line charge has a logarithm of r in it. Singular solutions aren’t necessarily wrong, it just means
that you have to look cl