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Introduction to Model Theory

DAVID MARKER

Abstract. This article introduces some of the basic concepts and results
from model theory, starting from scratch. The topics covered are be tailored
to the model theory of fields and later articles. I will be using algebraically
closed fields to illustrate most of these ideas. The tools described are quite
basic; most of the material is due either to Alfred Tarski or Abraham
Robinson. At the end I give some general references.

1. Languages and Structures

What is a mathematical structure? Some examples of mathematical struc-
tures we have in mind are the ordered additive group of integers, the complex
field, and the ordered real field with exponentiation.

To specify a structure we must specify the underlying set, some distinguished
operations, some distinguished relations and some distinguished elements. For
example, the ordered additive group of integers has underlying set Z and we
distinguish the binary function +, the binary relation < and the identity element
0. For the ordered field of real numbers with exponentiation we have underlying
set R and might distinguish the binary functions + and ×, the unary function
exp, the binary relation < and the elements 0 and 1.

Here is the formal definition.

Definition 1.1. A structure M is given by the following data.

(i) A set M called the universe or underlying set of M.
(ii) A collection of functions {fi : i ∈ I0} where fi : Mni →M for some ni ≥ 1.
(iii) A collection of relations {Ri : i ∈ I1} where Ri ⊆Mmi for some mi ≥ 1.
(iv) A collection of distinguished elements {ci : i ∈ I2} ⊆M .

Any (or all) of the sets I0, I1 and I2 may be empty. We refer to ni and mj as
the arity of fi and Rj .

Here are some examples:
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(1) The ordered field of real numbers has domain R, binary functions + ,− ,×,
relation <, and distinguished elements 0 and 1.

(2) The valued field of p-adic numbers has domainQp, binary functions + ,− ,× ,
distinguished elements 0 and 1, and a unary relation Zp, for the ring of inte-
gers.

In mathematical logic we study structures by examining the sentences of first
order logic true in those structures. To any structure we attach a language
L where we have an ni-ary function symbol f̂i for each fi, an mi-ary relation
symbol R̂i for each Ri and constant symbols ĉi for each ci.

An L-structure is a structure M where we can interpret all of the symbols of
L. For example, let L be the language where we have a binary function symbol
×̂ and a constant symbol 1̂. The following are examples of L-structures:

(1) M1 has underlying set Q. We interpret ×̂ as × and 1̂ as 1.
(2) M2 has underlying set Z. We interpret ×̂ as + and 1̂ as 0.

Of course we also could take the natural interpretation of L in Z.

(3) M3 has underlying set Z. We interpret ×̂ as × and 1̂ as 1.

Definition. If M and N are L-structures with underlying sets M and N ,
respectively, an L-embedding σ : M → N is an injective map that preserves the
interpretation of all function symbols, relation symbols and constant symbols of
L. An L-isomorphism is a bijective L-embedding.

We say that M is a substructure of N (and write M ⊂ N) if M ⊂ N and the
inclusion map is an L-embedding.

Formulas in our language are finite strings made from the symbols of L,
the equality relation =, variables x0, x1, . . . , the logical connectives ∃ ,∧ ,∨ ,
quantifiers ∃ and ∀ and parentheses. (See the appendix on page 34 for precise
definitions.) We interpret ∃ ,∧ ,∨ as “not”, “and” and “or” and ∃ and ∀ as
“there exists” and “for all”. I will use x, y, z . . . and their subscripted varieties
as variables and not use the symbol ˆ when no confusion arises.

Let Lr be the language of rings, where we have binary function symbols +,−
and × and constant symbols 0 and 1. The language of ordered rings, Lor is Lr

with an additional binary relation symbol <. (As usual we will write x+y instead
of +(x, y) and x < y for <(x, y).) Here are some examples of Lor-formulas:

x1 = 0 ∨ x1 > 0

∃x2 x2 × x2 = x1

∀x1 (x1 = 0 ∨ ∃x2 x2 × x1 = 1)

Intuitively, the first formula asserts that x1 ≥ 0, the second asserts that x1 is
a square and the third asserts that every nonzero element has a multiplicative
inverse. We would like to define what it means for a formula to be true in a
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structure, but these examples already show one difficulty. While in any Lor-
structure the third formula will either be true or false, the first two formulas
express a property which may or may not be true of elements of the structure.

We say that a variable occurs freely in a formula φ if it is not inside the scope
of a quantifier; otherwise we say it is bound. For example, x1 is free in the first
two formulas and bound in the third, while x2 is bound in both formulas.

We call a formula a sentence if it has no free variables. For any L-structure
each sentence of L is either true or false. Let φ be a sentence. We say that M is
a model of φ, and write M |= φ, if and only if φ is true in M.

We often write φ(x1, . . . , xn) to show that the variables x1, . . . , xn are free
in the formula φ. We think of φ(x1, . . . , xn) as describing a property of n-
tuples from M . For example, the Lor-formula ∃x2 x2 × x2 = x1 has the single
free variable x1 and describes the property “x1 is a square”. If a1, . . . , an are
elements of M we say M |= φ(a1, . . . , an) if the property expressed by φ is true
of the tuple (a1, . . . , an).

We say that two L-structures M and N are elementarily equivalent if for all
L-sentences M |= φ⇐⇒ N |= φ.

Proposition 1.2. If M and N are isomorphic, then they are elementarily
equivalent .

Proof. Show by induction on formulas that if φ(x1, . . . , xn) is a formula, σ :
M → N is an isomorphism and a1, . . . , an ∈M , then

M |= φ(a1, . . . , an) ⇐⇒ N |= φ(σ(a1), . . . , σ(an)). �

We say that an L-embedding f : M→ N is elementary if for any a1, . . . , an ∈M
and any formula φ(x1, . . . , xn)

M |= φ(a1, . . . , an) ⇐⇒ N |= φ(f(a1), . . . , f(an)).

If M ⊂ N we say that M is an elementary substructure if the inclusion map is
elementary.

Definition. We say that a set X ⊂ Mn is definable in the L-structure M if
there is a formula φ(x1, . . . , xn+m) and elements b1, . . . , bm ∈M such that

X = {(a1, . . . , an) : M |= φ(a1, . . . , an, b1, . . . , bm)}.

We say that X is A-definable or definable over A, where A ⊆M , if we can choose
that b1, . . . , bm ∈ A. For example, if m = 0 we say X is ∅-definable.

For example, {x : x > π} is definable over R but not ∅-definable, while {x :
x >

√
2} is ∅-definable by the formula x × x > 1 + 1 ∧ x > 0. In the field

(Qp,+ ,− ,× , 0, 1) if p 6= 2 we can define the valuation ring Zp by the formula
∃y y2 = px2 + 1.

We can give a very simple characterization of the definable sets.
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Proposition 1.3. Suppose that Dn is a collection of subsets of Mn for all
n ≥ 1 such that D = (Dn : n ≥ 1) is the smallest collection satisfying the
following conditions:

(i) Mn ∈ Dn.
(ii) For all n-ary functions f of M, the graph of f is in Dn+1.
(iii) For all n-ary relations R of M, R ∈ Dn.
(iv) For all i, j ≤ n, {(x1, . . . , xn) ∈Mn : xi = xj} ∈ Dn.
(v) Each Dn is closed under complement , union and intersection.
(vi) If X ∈ Dm and π : Mn → Mm is the projection map (x1, . . . , xn) 7→
(xi1 , . . . , xim), then π−1(X) ∈ Dn.
(vii) If X ∈ Dn and π is as above, then π(X) ∈ Dm.
(viii) If X ∈ Dn+m and b ∈Mm, then {a ∈Mn : (a, b) ∈ X} ∈ Dn.

Then X ⊆Mn is definable if and only if X ∈ Dn.

2. Theories

An L-theory is a set of L-sentences. Theories arise naturally as we attempt to
axiomatize the properties of mathematical structures. For example, if Lr is the
language of rings we can write down the field axioms as Lr sentences. We can
give the theory of algebraically closed fields (ACF) by taking the field axioms
plus, for each n ≥ 1, the axiom

∀x0 ∀x1 . . . ∀xn−1 ∃y yn + xn−1y
n−1 + · · ·x1y + x0 = 0.

If T is an L-theory, we say M |= T if M |= φ for all φ ∈ T . We say that an
L-sentence φ is a logical consequence of an L-theory T (and write T |= φ) if and
only if M |= φ for all M |= T . For example, ACF |= ∀x ∀y ∃z x2 + y2 = z2.

Theorem 2.1 (Gödel’s Completeness Theorem, first version). T |= φ

if and only if there is a formal proof of φ using assumptions from T .

This has a very useful reformulation with an important corollary. We say that an
L-theory T is satisfiable if and only if there is an L-structure M with M |= T and
we say that T is consistent if and only if we cannot formally derive a contradiction
from T .

Theorem 2.2 (Completeness Theorem, second version). T is satisfiable
if and only if T is consistent . Moreover if T has infinite models then T has a
model where the underlying set has cardinality κ, for all κ ≥ |L|+ ℵ0.

This has an easy consequence, which is the cornerstone of model theory.

Theorem 2.3 (Compactness Theorem). If every finite subset of T is satis-
fiable, then T is satisfiable.
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Proof. If T is not satisfiable, then by Theorem 2.2 there is a proof of a contra-
diction from T . As proofs use only finitely many assumptions from T there is a
finite inconsistent subset of T . �

An important question when we try to axiomatize the properties of a structure
is whether we have said everything we can say. An L-theory T is complete if for
all L-sentences φ either T |= φ or T |= ¬φ. Another way to say this is that a
theory is complete if any two models are elementarily equivalent.

The easiest way to get a complete theory is to take the complete theory of a
structure. If M is a structure, let Th(M) = {φ : M |= φ}.

Gödel’s incompleteness theorem says that Peano axioms are not complete
(and there is no reasonable way to complete them). It is easy to see that ACF
is not complete as it does not decide the characteristic: For p a prime number
let ψp be the sentence

∀x x+ · · ·+ x︸ ︷︷ ︸
p times

= 0.

Clearly neither ψp nor ¬ψp is a logical consequence of ACF. But this is the
only obstruction. Let ACFp be the theory obtained by adding ψp to ACF and
let ACF0 be the theory obtained by adding to ACF the sentences {¬ψp : p a
prime }. We show shortly that ACFp is complete.

If κ is a cardinal, we say that a theory T is κ-categorical if any two models of
T where the underlying set has cardinality κ are isomorphic. Since algebraically
closed fields are determined up to isomorphism by their characteristic and tran-
scendence degree it is easy to see that ACFp is κ-categorical for all κ ≥ ℵ1.

Proposition 2.4 (Vaught’s Test). If all models of T are infinite and T is
κ-categorical for some infinite cardinal κ, then T is complete.

Proof. Suppose not. Then T ∪ {φ} and T ∪ {¬φ} are satisfiable. By 2.2 we
can find κ and M and N of cardinality κ such that M |= T +φ and N |= T +¬φ.
But this is impossible, as M must be isomorphic to N. �

Thus ACFp is complete for p ≥ 0. This can be thought of as a version of the
Lefschetz principle.

Corollary 2.5. Let φ be an Lr-sentence. The following statements are equiv-
alent .

(i) φ is true in the complex numbers.
(ii) φ is true in every algebraically closed field of characteristic zero.
(iii) φ is true in some algebraically closed field of characteristic zero.
(iv) There are arbitrarily large primes p such that φ is true in some algebraically
closed field of characteristic p.
(v) There is an m such that for all p > m, φ is true in all algebraically closed
fields of characteristic p.
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Proof. The equivalence of (i)–(iii) is just the completeness of ACF0 and (v)⇒
(iv) is obvious.

For (ii) ⇒ (v) suppose ACF0 |= φ. By the completeness theorem, there is a
proof of φ from ACF0. That proof only uses finitely many assertions ¬ψq; thus,
for large enough p, ACFp |= φ.

For (iv) ⇒ (ii) suppose ACF0 6|= φ. By completeness ACF0 |= ¬φ. By the
above argument, ACFp |= ¬φ for sufficiently large p; thus (iv) fails. �

This result has a striking application.

Theorem 2.6 (Ax). Let F : Cn → C
n be an injective polynomial map. Then

F is surjective.

Proof. Suppose not. Let X = (X1, . . . , Xn). Let F (X) be a counterexample,
with coordinate functions F1(X), . . . , Fn(X), each Fi ∈ C[X] having degree at
most d. There is an L-sentence Φn,d such that, for K a field, K |= Φn,d if and
only if every injective polynomial map G : Kn → Kn whose coordinate functions
have degree at most d is surjective. We can quantify over polynomials of degree
at most d by quantifying over the coefficients. For example, Φ2,2 is the sentence

∀a0,0 ∀a0,1 ∀a0,2 ∀a1,0 ∀a1,1 ∀a2,0 ∀b0,0 ∀b0,1 ∀b0,2 ∀b1,0 ∀b1,1 ∀b2,0(
∀x1 ∀y1 ∀x2 ∀y2∑

ai,jx
i
1y
j
1 =

∑
ai,jx

i
2y
j
2 ∧

∑
bi,jx

i
1y
j
1 =

∑
bi,jx

i
2y
j
2 → x1 = x2 ∧ y1 = y2

)
→ ∀u ∀v ∃x∃y

∑
ai,jx

iyj = u ∧
∑
bi,jx

yyj = v.

If K is a finite field then K |= Φn,d. It follows that Φn,d holds in any increasing
union of finite fields. In particular the algebraic closure of a finite field satisfies
Φn,d. Hence, by Corollary 2.5, C |= Φn,d, a contradiction. �

Originally logicians looked for completeness results because they lead to decid-
ability results.

Corollary 2.7. The theory ACFp is decidable for p ≥ 0. That is, for each p

there is an algorithm which for each sentence φ will determine if ACFp |= φ.

Proof. By the completeness of ACFp and the completeness theorem either
there is a proof of φ or a proof of ¬φ from ACFp. We can systematically search
all finite sequences of symbols and test each one to see if it is a valid proof of
either φ or ¬φ. Eventually we will find one or the other. �

3. Quantifier Elimination

Let F be a field. If p(X1, . . . , Xn) ∈ F [X1, . . . , Xn], the zero set {x ∈ Fn :
p(x) = 0} is defined by a quantifier free Lr-formula. We say that a subset of
Fn is constructible if it is a boolean combination of zero sets of polynomials in
F [X1, . . . , Xn]. It is easy to see that the subsets of Fn defined by quantifier free
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formulas are exactly the constructible subsets of Fn. If F is an algebraically
closed field then Chevalley’s theorem from algebraic geometry asserts that the
projection of a constructible subset of Fn+1 to Fn is constructible. Restating
this model-theoretically, this says that every definable set is constructible.

This is of course not true for non-algebraically closed fields. In the reals we
can define the ordering by

x < y ⇐⇒ ∃z z 6= 0 ∧ x+ z2 = y,

but this is not a constructible subset of R2. Here this is the only problem. We
say that a subset of an ordered field is semialgebraic if it is a boolean combina-
tion of zero sets of polynomials and polynomial inequalities (like {x : p(x) > 0}).
It is easy to see that the semialgebraic sets are exacty the sets defined by quanti-
fier free Lor-formulas. The Tarski–Seidenberg theorem says that in the reals (or
more generally in a real closed field) the projection of a semialgebraic set is semi-
algebraic. Thus in the real field the definable sets are exactly the semialgebraic
sets.

In model theory we study the definable sets of a structure. Quantifier elimi-
nation results are very useful, as often one can show the quantifier free definable
sets have good geometric properties while the definable sets have strong closure
properties. For example, suppose A ⊆ Rn is semialgebraic. We want to show
that the closure of A is also semialgebraic. Since A is definable there is an
Lor-formula φ(x1, . . . , xn, a1, . . . , am) that defines A. Then the formula

∀ε > 0 ∃y1 . . . ∃yn
(
φ(y1, . . . , yn, a1, . . . , am) ∧ (x1−y1)2 + · · ·+(xn−yn)2 < ε

)
defines the closure of A. Since the closure of A is definable it is semialgebraic.

In the structure (Q,+ ,× , 0, 1) we can also define the ordering by saying
that the nonnegative elements are sums of four squares. Julia Robinson showed
that the integers are definable in the field of rational numbers. By Gödel’s
incompleteness theorem this implies that the theory of the rational numbers is
undecidable and the definable subsets are quite complicated.

There is a useful model-theoretic test for quantifier elimination.

Theorem 3.1. Let L be a language containing at least one constant symbol .
Let T be an L-theory and let φ(v1, . . . , vm) be an L-formula with free variables
v1, . . . , vm (we allow the possibility that m = 0). The following statements are
equivalent :

(i) There is a quantifier free L-formula ψ(v1, . . . , vm) such that

T |= ∀v̄ (φ(v̄)←→ ψ(v̄)).

(ii) If A and B are models of T , C ⊆ A and C ⊆ B, then A |= φ(ā) if and only
if B |= φ(ā) for all ā ∈ C.
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Proof. (i) ⇒ (ii): Suppose T |= ∀v̄ (φ(v̄)←→ ψ(v̄)), where ψ is quantifier free.
Let ā ∈ C where C is a substructure of A and B and the later two structures
are models of T . Since quantifier free formulas are preserved under substructure
and extension

A |= φ(ā)⇐⇒ A |= ψ(ā)

⇐⇒ C |= ψ(ā) (since C ⊆ A)

⇐⇒ B |= ψ(ā) (since C ⊆ B)

⇐⇒ B |= φ(ā).

(ii) ⇒ (i): First, if T |= ∀v̄ φ(v̄), then T |= ∀v̄ (φ(v̄) ←→ c = c). Second, if
T |= ∀v̄ ¬φ(v̄), then T |= ∀v̄ (φ(v̄) ←→ c 6= c). In fact, if φ is not a sentence we
could use “v1 = v1” in place of c = c.

Thus we may assume that both φ(v̄) and ¬φ(v̄) are consistent with T .
Let Γ(v̄) = {ψ(v̄) : ψ is quantifier free and T |= ∀v̄ (φ(v̄) → ψ(v̄))}. Let

d1, . . . , dm be new constant symbols. We will show that T + Γ(d̄) |= φ(d̄). Thus
by compactness there are ψ1, . . . , ψn ∈ Γ such that T |= ∀v̄

(∧
ψi(v̄) → φ(v̄)

)
.

So T |= ∀v̄
(∧

ψi(v̄)←→ φ(v̄)
)

and
∧
ψi(v̄) is quantifier free. We need only prove

the following claim.

Claim. T + Γ(d̄) |= φ(d̄).

Suppose not. Let A |= T+Γ(d̄)+¬φ(d̄). Let C be the substructure of A generated
by d̄. (Note: if m = 0 we need the constant symbol to ensure C is non-empty.)

Let Diag(C) be the set of all atomic and negated atomic formulas with pa-
rameters from C that are true in C.

Let Σ = T + Diag(C) + φ(d̄). If Σ is inconsistent, then there are quantifier
free formulas quantifier free formulas ψ1(d̄), . . . , ψn(d̄) ∈ Diag(C), such that T |=
∀v̄ (

∧
ψi(v̄) → ¬φ(v̄)). But then T |= ∀v̄ (φ(v̄) →

∨
¬ψi(v̄)). So

∨
¬ψi(v̄) ∈ Γ

and C |=
∨
¬ψi(d̄), a contradiction. Thus Σ is consistent.

Let B |= Σ. Since Σ ⊇ Diag(C), we may assume that C ⊆ B. But since
A |= ¬φ(d̄), B |= ¬φ(d̄), a contradiction. �

The next lemma shows that to prove quantifier elimination for a theory we need
only prove quantifier elimination for formulas of a very simple form.

Lemma 3.2. Suppose that , for every quantifier free L-formula θ(v̄, w), there
is a quantifier free ψ(v̄) such that T |= ∀v̄ (∃w θ(v̄, w) ←→ ψ(v̄)). Then every
L-formula φ(v̄) is provably equivalent to a quantifier free L-formula.

Proof. We prove this by induction on the complexity of φ. The result is clear
if φ(v̄) is quantifier free.

For i = 0, 1 suppose that T |= ∀v̄ (θi(v̄)←→ ψi(v̄)), where ψi is quantifier free.
If φ(v̄) = ¬θ0(v̄), then T |= ∀v̄ (φ(v̄)←→ ¬ψ0(v̄)).
If φ(v̄) = θ0(v̄) ∧ θ1(v̄), then T |= ∀v (φ(v̄)←→ (ψ0(v̄) ∧ ψ1(v̄))).
In either case φ is provably equivalent to a quantifier free formula.
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Suppose that T |= ∀v̄
(
θ(v̄, w) ←→ ψ0(v̄, w)

)
, where ψ is quantifier free. Sup-

pose φ(v̄) = ∃w θ(v̄, w). Then T |= ∀v̄
(
φ(v̄) ←→ ∃w ψ(v̄, w)

)
. By our assump-

tions there is a quantifier free ψ(v̄) such that

T |= ∀v̄ (∃w ψ0(v̄, w)←→ ψ(v̄)).

But then T |= ∀v̄ (φ(v̄)←→ ψ(v̄)). �

Thus to show that T has quantifier elimination we need only verify that condition
(ii) of Theorem 3.1 holds for every formula φ(v̄) of the form ∃w θ(v̄, w), where
θ(v̄, w) is quantifier free.

Theorem 3.3. The theory ACF has quantifier elimination.

Proof. Let F be a field and let K and L be algebraically closed extensions of
F . Suppose φ(v, w̄) is a quantifier free formula, ā ∈ F , b ∈ K and K |= φ(b, ā).
We must show that L |= ∃v φ(v, ā).

There are polynomials fi,j , gi,j ∈ F [X] such that φ(v, ā) is equivalent to

l∨
i=1

( m∧
j=1

fi,j(v) = 0 ∧
n∧
j=1

gi,j(v) 6= 0

)
.

Then K |=
∧m
j=1 fi,j(b) = 0 ∧

∧n
j=1 gi,j(b) for some i.

Let F̂ be the algebraic closure of F . We can view F̂ as a subfield of both K

and L. If any fi,j is not identically zero for j = 1, . . . ,m, then b ∈ F̂ ⊆ L and
we are done.

Otherwise, since
n∧
i=1

gi,j(b) 6= 0,

gi,j(X) = 0 has finitely many solutions. Let {c1, . . . , cs} be all of the elements
of L where some gi,j vanishes for j = 1, . . . ,m. If we pick any element d of L
with d /∈ {c1, . . . , cs}, then L |= φ(d, ā). �

The next result summarizes some simple applications.

Corollary 3.4. Let K be an algebraically closed field .

(i) If X ⊂ K is definable, then either X or K \ X is finite. (This property is
called strong minimality).
(ii) Suppose f : K → K is definable. If K has characteristic zero, there is a
rational function g such that f(x) = g(x) for all but fintely many x. If K has
characteristic p there is a rational function g and n ≥ 0 such that f(x) = g(x)1/pn

for all but finitely many x.

Proof. (i) X is a boolean combination of sets of the form {x : f(x) = 0} and
these sets are finite.

(ii) Assume K has characteristic 0 (the p > 0 case is similar). Let L be an
elementary extension of K and let a ∈ L \ K. If σ is any automorphism of L
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fixingK(a), then σ(f(a)) = f(a). But then f(a) ∈ K(a). Thus there is a rational
function g ∈ K(X) such that f(a) = g(a). The set {x ∈ K : f(x) = g(x)} is
either finite or cofinite by (i). If it has size N , then the fact that it has exactly N
elements is expressed by a sentence true of L and K. Then L would not contain
any new elements of this set. Thus f(x) = g(x) for all but finitely many x. �

Indeed, (in characteristic zero) if f is definable there is a Zariski open O and a
rational function g such that f |O = g|O.

The quantifer elimination test has many other applications. For example,
consider RCF, the theory of real closed ordered fields in the language Lor. The
axioms for RCF consist of:

(i) the axioms for ordered fields;
(ii) ∀x > 0 ∃y y2 = x;
(iii) the axiom ∀x0 . . . ∀xn−1 ∃y yn + xn−1y

n−1 + · · · + x0 = 0 for each odd
n > 0.

Clearly RCF is part of the Lor-theory of the real field. We will see shortly that
this theory is complete and hence axiomatizes the complete theory of the real
field. First we show RCF has quantifier elimination. We use the algebraic facts
that every ordered field has a unique real closed algebraic extension and over a
real closed field any polynomial in one variable factors into a product of linear
and irreducible quadratic factors (see [Lang 1984, Section XI.2], for example).

Theorem 3.5. The theory RCF has quantifier elimination in Lor.

Proof. We apply Theorem 3.1. Let F0 and F1 be models of RCF and let (R,<)
be a common substructure. Then (R,<) is an ordered domain. Let L be the real
closure of the fraction field of R. By the uniqueness of real closures we can may
assume that (L,<) is a substructure of F0 and F1. Suppose φ(v, w̄) is quantifier
free, ā ∈ R, b ∈ F0 and F0 |= φ(b, ā). We need to show that F1 |= ∃v φ(v, ā). It
suffices to show that L |= ∃v φ(v, ā).

As in the proof of Theorem 3.3 (and fooling around with the order), we may as-
sume that there are polynomials f1, . . . , fn, g1, . . . , gm ∈ R[X] such that φ(v, ā) is

n∧
i=1

fi(v) = 0 ∧
m∧
i=1

gi(v) > 0.

If any of the fi is not zero, then since φ(b, ā), b is algebraic over R and thus in
L. So we may assume φ(v, ā) is

m∧
i=1

gi(v) > 0.

Since L is a real closed field, we can factor each gi as a product of factors of the
form (X − c) and (X2 + bX + c), where b2 − 4c < 0. The linear factors change
sign at c, while the quadratic factors do not change signs. If follows that we can
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find α1, . . . , αl ∈ L ∪ {−∞} and β1, . . . , βl ∈ L ∪ {+∞} such that, for v ∈ F0,
φ(v, ā) if and only if

l∨
i=1

αi < v < βi.

Since F0 |= φ(b, ā), we have αi < b < βi for some i. Then L |= φ( 1
2 (α+β), ā). �

Corollary 3.6. RCF is complete and decidable.

Proof. Let φ be a sentence. By quantifier elimination there is a quantifier free
sentence ψ such that RCF |= φ ←→ ψ. We can embed the rational numbers in
any real closed field F and F |= ψ if and only if Q |= ψ. Thus F |= φ if and only
if Q |= ψ. In particular if F1 and F2 are real closed fields then F1 |= φ if and
only if F2 |= φ.

Hence RCF is complete. Decidability follows as in 2.7. �

We also have an analog of Corollary 3.4.

Corollary 3.7. If R is real closed and X ⊂ R is definable, then X is a finite
union of points and intervals (this is called o-minimality).

Proof. Definable subsets of R are boolean combinations of {x : f(x) > 0}
which are finite unions of intervals. �

4. Model Completeness

We say that a theory T is model complete if whenever M and N are models
of T and M ⊂ N, then M is an elementary substructure of N.

Proposition 4.1. If T has quantifier elimination, then T is model complete.

Proof. Let M ⊂ N. Suppose φ(v̄) is a formula and ā ∈ Mn. There is a
quantifier free formula ψ(v̄) such that

T |= ∀v̄ (φ(v̄)←→ ψ(v̄)).

Since ψ is quantifier free, M |= ψ(ā) ⇐⇒ N |= ψ(ā). Thus M |= ψ(ā) ⇐⇒
N |= ψ(ā). �

Model completeness can arise in cases where quantifier elimination fails. For
example, let T be the Lr-theory of the real numbers (without a symbol for the
order). The formula ∃y y2 = x is not equivalent to a quantifier free formula
(recall that quantifier free definable sets in Lor are constructible), so T does not
have quantifier elimination. On the other hand the ordering of a real closed field
is definable in the field language, thus if F and K are real closed fields and F is
a subfield of K, then the ordering on F agrees with the ordering inherited from
K (that is, F is an Lor-substructure of K). Thus, by quantifier elimination in
Lor, F is an elementary substructure of K.
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This example shows that “quantifier elimination” is sensitive to the exact
choice of language. In general we can always enrich the language so that we
have quantifier elimination. If T0 is an L-theory, we can add to our language
an n-ary relation symbol Rφ for each formula φ with n free variables and we
could let T be the theory where we add to T0 axioms ∀x̄ (φ(x̄) ←→ Rφ(x̄)) for
each formula φ. The theory T will have quantifier elimination, but this would
be useless as we would not be able to say anything sensible about the quantifier
free formulas. The goal is to show we have quantifer elimination in a language
where the quantifier free formulas are simple.

Wilkie showed that the theory of (R,+ ,− ,× , < , exp) is model complete, but

y > 0 ∧ ∃w (wy = x ∧ z = y exp(w))

is not equivalent to a quantifier free formula in the language

{+ ,− ,× , < , 0, 1, exp}

(or any expansion by total real analytic functions). Van den Dries, Macintyre and
I showed that you can eliminate quantifiers in a much more expressive language,
but we do not know the simplest language for quantifier elimination.

Model completeness itself has useful consequences. For example, the model
completeness of ACF leads to an easy proof of a version of the Nullstellensatz.

Theorem 4.2. Let F be an algebraically closed field and let I ⊂ F [X1, . . . , Xn]
be a prime ideal . Then there is a ∈ Fn such that f(a) = 0 for all f ∈ I.

Proof. Let K be the algebraic closure of the fraction field of F [X1, . . . , Xn]/I.
If xi ∈ K is Xi/I, then f(x1, . . . , xn) = 0 for all f ∈ I. Choose f1, . . . , fm
generating I. Then

K |= ∃y1, . . . , yn

m∧
i=1

fi(y1, . . . , yn) = 0.

As this is a sentence with parameters from F , by model completeness this sen-
tence is also true in F . Thus there is a ∈ Fn such that fi(a) = 0 for i = 1, . . . ,m
and hence f(a) = 0 for all f ∈ I. �

A very similar argument can be used to reprove Artin’s solution to Hilbert’s
seventeenth problem.

Theorem 4.3. Let F be a real closed field . Suppose that f(X1, . . . , Xn) ∈
F (X1, . . . , Xn) and that f(a) ≥ 0 for all a ∈ Fn (we call f positive semi-definite).
Then f is a sum of squares of rational functions.

Proof. If not, we can extend the order of F to F (X1, . . . , Xn) such that f < 0
(see [Lang 1984, Section XI.2]). Let K be the real closure of F (X1, . . . , Xn) with
this ordering. Then

K |= ∃y1 . . .∃yn f(y1, . . . , yn) < 0,
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since we can use X1, . . . , Xn as witnesses. By model completeness

F |= ∃y1 . . .∃yn f(y1, . . . , yn) < 0. �

Definition. We say that a theory T is the model companion of a universial
theory T0 if:

(i) every model of T is a model of T0,
(ii) every model of T0 can be extended to a model of T , and
(iii) T is model complete.

For example, the theory of algebraically closed fields is the model companion of
the theory of integral domains and the theory of real closed fields is the model
companion of the theory of ordered domains. More interesting examples can be
found in [Chatzidakis 2000].

Model theoretic methods can sometimes be used to obtain effective bounds.
Compactness arguments alone can lead to crude bounds.

Proposition 4.4. There is a computable function τ(n, d) such if F is a real
closed field and f = g/h ∈ F (X1, . . . , Xn) where f and g are polynomials of
degree at most d and f is positive semidefinite then f is the sum of squares of
at most τ(n, d) rational functions with numerator and denominator of degree at
most τ(n, d).

Proof. Fix n, d. We first claim that there is an M such that any positive
semidefinite rational function in n variables with numerator and denominator
of degree at most d is a sum of at most M squares of rational functions with
numerator and denominator of degree at most M . Suppose not. Let c1, . . . , cN
be new constants which will be coefficients of a rational function f in n-variables
with numerator and denominator of degree at most d. Let ΦM be a sentence
asserting “f is not a sum of at most M squares of functions of degree at most
M”. Then RCF + “f is positive semidefinite” + {¬ΦM : M ≥ 1} is satisfiable,
contradicting Hilbert’s 17th problem.

Given n and d, let τ(n, d) be the least M as above. Since RCF is decidable,
we can compute τ(n, d). �

5. Types

Suppose M is an L-structure and A ⊆ M . Let LA be the language obtained
by adding to L constant symbols for all elements of A. Let ThA(M) be the set
of all LA-sentences true in M.

Definition. An n-type over A is a set of LA-formulas in free variables x1, . . . , xn
that is consistent with ThA(M). A complete n-type over A is a maximal n-type.
In other words a complete type is a set p of LA-formulas consistent with ThA(M)
in the free variables x1, . . . , xn such that for any LA-formula φ(x̄) either φ(x̄) ∈ p
or ¬φ(x̄) ∈ p. Let Sn(A) be the set of all complete n-types over A.
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We sometimes refer to incomplete types as partial types.

By compactness every n-type over A is realized in some elementary extension
of M.

There is one easy way to get complete types. Suppose N is an elementary
extension of M and b̄ ∈ Nn. Let tp(b̄/A) = {φ(x̄) ∈ LA : N |= φ(b̄)}. It is easy
to see that tp(b̄/A) is a complete type.

If p ∈ Sn(A) we say that b̄ realizes p if tp(b̄/A) = p.

What do types tell us?

Proposition 5.1. Suppose ā, b̄ ∈Mn and tp(ā/A) = tp(b̄/A). Then there is an
elementary extension N of M and an L-automorphism of N which fixes A and
maps ā to b̄.

Proof. We carefully iterate the following lemma.

Lemma 5.2. Suppose M is an L-structure, A ⊂M and f : A→M is a partial
elementary map (i .e., M |= φ(a1, . . . , an) ⇐⇒ M |= φ(f(a1), . . . , f(an))

)
. If

b ∈ M , we can find N an elementary extension of N and extend f to a partial
elementary map from A ∪ {b} into N .

Proof. Let c be a new constant symbol. Let

Γ = {φ(c, f(a1), . . . , f(an)) : M |= φ(b, a1, . . . , an), a1, . . . , an ∈ A} ∪ ThM (M).

Suppose we find a structure N and an element c ∈ N satisfying all of the
formulas in Γ. Since N |= ThM (M), N is an elementary extension of M. It is
also easy to see that we can extend f to an elementary map by b 7→ c.

So it suffices to show that Γ is satisfiable. By compactness it suffices to show
that every finite subset of Γ is satisfiable. Taking conjunctions it is enough to
show that if M |= φ(b, a1, . . . , an) then M |= ∃v φ(v, f(a1), . . . , f(an)). But this
is clear since M |= ∃v φ(v, a1, . . . , an) and f is elementary. �

The type space Sn(A) can be topologized as follows. For each LA-formula
φ(x1, . . . , xn) let Bφ = {p ∈ Sn(A) : φ ∈ p}. The Stone topology on Sn(A)
is the topology generated by using the sets Bφ as basic open sets.1

Proposition 5.3. Sn(A) is compact and totally disconnected .

Proof. Suppose {Bφi : i ∈ I} is a cover of Sn(A) by basic open sets. Suppose
there is no finite subcover. Let Γ = {¬φi(x1, . . . , xn) : i ∈ I}. Since there in
no finite subcover every finite subset of Γ is satisfiable. By compactness Γ is
satisfiable and this yields a type that is not contained in any Bφi .

Since Sn(A) \ Bφ = B¬φ, each Bφ is open and closed. Thus Sn(A) is totally
disconnected. �

1Sn(A) can be thought of as the set of ultrafilters on the Boolean algebra of A-definable
subsets of Mn so it is in fact the Stone space of a Boolean algebra.
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Suppose K is an algebraically closed field and F is a subfield of K. What are the
complete n-types over F? Suppose p ∈ Sn(F ). Let Ip = {f ∈ F [X1, . . . , Xn] :
“f(x1, . . . , xn) = 0” ∈ p}. Let Spec(F [X1, . . . , Xn]) be the set of prime ideals of
F [X1, . . . , Xn]. We topologize this space by taking sub-basic open sets {P : f 6∈
P}, for f ∈ F [X̄].

Proposition 5.4. p 7→ Ip is a continuous bijection between Sn(F ) and

Spec(F [X̄]).

Proof. If fg ∈ Ip, then “f(x̄)g(x̄) = 0” ∈ p. Since p is complete either
“f(x̄) = 0” ∈ p or “g(x̄) = 0” ∈ p. Thus Ip is prime. It is just as easy to see
that it is an ideal.

If P is a prime ideal, then we can find a prime ideal P1 ∈ K[X̄] such that
P1 ∩F [X̄] = P . Let K1 be the algebraic closure of K[X̄]/P1 and let ai = Xi/P .
For f ∈ K[X̄] f(ā) = 0 if and only if f ∈ P1, thus Itp(ā/F ) = P . Thus the map
is surjective.

By quantifier elimination if Ip 6= Iq, then p 6= q.
Continuity is clear. �

This shows that the Zariski topology on Spec(F [X̄]) is compact.
We can identify (as objects) Sn(F ) and Spec(F [X̄]), but the Stone topology

is much finer that the Zariski topology. The Stone topology corresponds to the
topology generated by the constructible sets.

If p ∈ Sn(F ), let V = {x ∈ Kn : f(x) = 0 for all f ∈ Ip}. Then the type p
asserts that x̄ ∈ V and x̄ 6∈W for any W ⊂ V defined over F . Thus realizations
of p are points of V generic over F .

What about real closed fields? If F is an ordered subfield of a real closed
field and p is an n-type, let Ip be as above and let Cp = {f/Ip : f ∈ F [X̄]
and “f(x̄) > 0 ∈ p}. Then p 7→ (Ip, Cp) is a bijection onto the set of pairs of
real prime ideals P (prime ideals where −1 6=

∑
aib

2
i where ai > 0, ai ∈ F [X̄],

bi ∈ P ) and orderings of F [X̄]/P . This is the real spectrum of F [X̄].
In particular if R is a real closed field, then elements of S1(R) correspond to

either elements of R or cuts in the ordering of R.

6. Saturation

It is often useful to work in a very rich model of a theory. For example, it is
sometimes easier to prove things in an algebraically closed field of infinite tran-
scendence degree. Or when dealing with the reals it is useful to use nonstandard
methods by assuming there are infinite elements. In model theory we make this
precise in the following way.

Definition 6.1. Let κ be an infinite cardinal. We say that a structure M is
κ-saturated if for every A ⊂ M with |A| < κ if p ∈ S1(A), then there is b in M
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such that b realizes p. An easy induction shows that in this case every n-type
over A is also realized in M.

We say that M is saturated if it is |M |-saturated.

Lemma 6.2. If M is saturated , A ⊂M and |A| < |M |, then tp(ā/A) = tp(b̄/A)
if and only if there is an automorphism of M fixing A mapping ā to b̄.

Proof. The argument from 5.1 can be done completely inside M . �

Proposition 6.3. An algebraically closed field K is saturated if and only if it
has infinite transcendence degree.

Proof. Suppose A ⊂ K is finite and F is the field generated by A. Let p be the
1-type over A which says that x is transcendental over F . If K is ℵ0-saturated,
then p must be realized in K. Thus every ℵ0-saturated algebraically closed field
has infinite transcendence degree.

On the other hand suppose K has infinite transcendence degree and F ⊂ K

is a field generated by fewer that |K| elements. Let p ∈ S1(F ) and let Ip be as
in Proposition 5.4. If Ip = {0}, then p simply says “x is transcendental over F”,
and we can find a realization in K. If Ip is generated by f(X), then any zero of
f realizes p and we can find a realization in K. �

Unfortunately saturated models are not so easy to come by in general. In general
|Sn(A)| can be as large as 2|A|+|L|+ℵ0 . For example, 1-types over Q in the theory
of real closed fields, correspond to cuts in the rationals so |S1(Q)| = 2ℵ0 . Thus
set theoretic problems arise. Under assumptions like the generalized continuum
hypothesis or the existence of inaccessible cardinals we can find saturated models,
but it is also possible that there are no saturated real closed fields.

Suppose |L| ≤ ℵ0 and λ is an infinite cardinal. We say that an L-theory T is
λ-stable if and only for all M |= T and all A ⊂M , if |A| = λ, then |Sn(A)| = λ.
It is easy to see that algebraically closed fields are λ-stable for all infinite λ.

Proposition 6.4. If T is λ-stable, then T has a saturated model of size λ+.

Proof. We build a saturated model of size λ+ as a union of an elementary
chain of models (Mα : α < λ+) where each Mα has size λ. Let M0 be any model
of size λ. For α a limit let Mα be the union of the Mβ , for β < α.

Given Mα. Let (pβ : β < λ) list all 1-types over Mα. Build a chain of
elementary extensions (Nβ , β < λ) where N0 = Mα and where Nβ contains a
realization of pβ . Let Mα+1 be the union of the Nβ .

Let M =
⋃
α<λ+ Mα. Then |M | = λ+. If A ⊂ M and |A| = λ, then A ⊂ Mα

for some α. Thus any 1-type over A is already realized in Mα+1. �
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7. Interpretability and Imaginaries

It is often very useful to study the structures which can be defined inside a
give structure. For example, let K be a field and let G be the group GL2(K).
Let X = {(a, b, c, d) ∈ K4 : ad− bc 6= 0}. Let f : X2 → X by

f((a1, b1, c1, d1), (a2, b2, c2, d2))

= (a1a2 + b1c2, a1b2 + b1c2, c1a2 + d1c2, c1b2 + d1d2).

Clearly X and f are definable and the set X with the operation f is isomorphic
to GL2(K).

We say that an L0-structure N is definable in an L-structure M if and only if
we can find a definable (in L) subset X of Mn for some n and we can interpret
the symbols of L0 as definable subsets and functions on X so that the resulting
L0-structure is isomorphic to N.

The example above shows that GLn(K) is definable in K. It is also easy to
see that any linear algebraic group is definable in K.

We give a more interesting example. Let F be a field and let G be the group
of matricies of the form (

a b

0 1

)
where a, b ∈ K, a 6= 0. We will show that F is definable in the group G. Let

α =
(

1 1
0 1

)
and β =

(
τ 0
0 1

)
where τ 6= 0, 1. Let

A = {g ∈ G : gα = αg} =
{( 1 x

0 1

)
: x ∈ F

}
and

B = {g ∈ G : gβ = βg} =
{(

x 0
0 1

)
: x 6= 0

}
.

Clearly A and B are definable.
B acts on A by conjugation:(

x 0
0 1

)−1( 1 y

0 1

)(
x 0
0 1

)
=
(

1 y/x

0 1

)
.

Clearly the action (a, b) 7→ b−1ab is definable. We can define the map i : A\{1} →
B by i(a) = b if b−1ab = 1, i.e.,

i

(
1 x

0 1

)
=
(
x 0
0 1

)
.

Define an operation ∗ on A by

a ∗ b =
{
i(b)−1ab if b 6= 1

1 if b = 1.
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It is now easy to see that (F,+ ,× , 0, 1) is isomorphic to (A, · , ∗ , 1, α). Thus the
field is definable in G.

This will not be true for all algebraic groups. For example, if E is an elliptic
curve and ⊕ is the addition law on E then we cannot interpret a field in the
group (E,⊕).

Often we want to do more general constructions. For example, suppose we
have a definable group G and a definable normal subgroup H. We might want
to look at the group G/H. It is possible that G/H does not correspond to
a definable group in our structure. But it does correspond to the cosets of a
definable equivalence relation.

We say that an L0-structure N is interpretable in an L-structure M if there is
a definable set X, a definable equivalence relation E on X, and for each symbol of
L we can find definable E-invariant sets on X, such that X/E with the induced
structure is isomorphic to N.

As an example let us show that we can interpret the additive group of integers
in the field Qp. First note that we can define Zp = {x ∈ Qp : ∃y y2 = px2 + 1}
(at least for p 6= 2). Let U = {x ∈ Zp : ∃y ∈ Zp : xy = 1} be the units of Zp.
Then (Z,+) is isomorphic to the multiplicative group Q∗p/U . We can define the
ordering on Q∗p/U by

x/U ≥ y/U ⇐⇒ x

y
∈ Zp.

Quotient constructions are so useful that we often enrich our structure so
that we can deal with all quotients as elements of the structure. Let M be an
L-structure. If E is a ∅-definable equivalene relation on Mn, let SE = Mn/E

and let πE : Mn →Mn/E be the quotient map. Let Meq be the structure whose
underlying set is the disjoint union of M and all of the SE for E a ∅-definable
equivalence relation. In addition to the relations and functions of L, we add
function symbols for each map πE . We call the new elements of Meq imaginary
elements.

If a structure N is interpretable in M, then N is definable in Meq. On other
hand, not much has changed, if X ⊆ Mn is definable in Meq then X is already
definable in M.

An important property of many of the theories of fields that we will consider
is that the passage from K to Keq is unnecessary.

Van den Dries showed that in real closed fields any definable equivalence
relation has a definable set of representatives. Nothing this strong could be true
in algebraically closed fields as a set of represntatives for the equivalence relation
xEy ←→ x2 = y2 would be infinite and coinfinite.

We say that M has elimination of imaginaries if, whenever E is a definable
equivalence relation onMn, there is for somem a definable function f :Mn→Mm

such that xEy ←→ f(x) = f(y).
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Theorem 7.1 (Poizat). Algebraically closed fields have elimination of imagi-
naries.

In other words, if X is a constructible set and E is a constructible equivalence
relation on X, then X/E can be viewed as a constructible set.

The proof of Theorem 7.1 proceeds by first showing that a theory has elimi-
nation of imaginaries if and only if for any saturated model M and any X ⊂Mn

definable there is ā ∈ Mm for some m such that for all automorphisms σ of M,
σ fixes X setwise if and only if σ(ā) = ā. We call ā canonical parameter for X.
If X is defined by φ(x̄, b̄), we could define an equivalence relation b̄1E b̄2 if and
only if φ(x̄, b̄1)←→ φ(x̄, b̄2). Then b̄/E is a canonical parameter for X. In general
canonical parameters will only be found in Meq.

Suppose K is an algebraically closed field and X is an irreducible variety.
There is a smallest subfield k ⊂ K such that X is fixed by an automorphism
if and only if k is fixed pointwise (k is called the field of definition of X). The
subfield k must be finitely generated and if ā generates k, then ā is a canonical
parameter. From this observation and quantifier elimination one can derive
elimination of imaginaries.

The field of p-adics is a natural example where elimination of imaginaries
fails. We saw above that we can interpret the integers in Qp. Analysis using
quantifier elimination for the p-adics, shows that any definable set is either finite
or uncountable, so the integers cannot be isomorphic to a definable set.

Here is another instructive example where elimination of imaginaries fails. Let
K be an algebraically closed field of characteristic zero. Let C be curve of genus
at least one and let C be the structure with underlying set C and relation symbols
for all constructible subsets of Cn. Since there is a rational map π : C → K, we
can intepret the field on C using the equivalence relation xEy ⇐⇒ π(x) = π(y).
If C/E was definably isomorphic to a definable set X ⊂ Cn, this would give rise
to a definable map f : K → C. But (by Corollary 3.4) there is a rational map
g : K → C which agrees with f on all but a finite set. By genus considerations
g is constant.

It is often very important to understand the groups and fields interpretable
in a structure. For algebraically closed fields we get a very satisfying answer.
It is easy to see that if K is an algebraically closed field any algebraic group
defined over K is interpretable in K and hence, by elimination of imaginaries,
isomorphic to a definable group. The following theorem is related to Weil’s
theorems on group chunks.

Theorem 7.2. (i) (van den Dries and Hrushovski) If a group G is definable in
an algebraically closed field K, then G is definably isomorphic to the K-rational
points of an algebraic group defined over K.
(ii) (Poizat) If F is an infinite field definable in an algebraically closed field ,
then F is definably isomorphic to K.
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Appendix: Formulas

Here I give a precise definition of formulas. Let L be a language.

Definition. (i) The set of L-terms is the smallest set T such that all constant
symbols of L are in T,
(ii) all variables are in T, and
(iii) if t1, . . . , tn are in T and f̂ is an n-ary function symbol of L, then

f̂(t1, . . . , tn) ∈ T.

The set of atomic L-formulas is the smallest set A such that

(i) if t1 and t2 are terms, then t1 = t2 is in A, and
(ii) if t1, . . . , tn, are terms and R̂ is an n-ary function symbol, then R̂(t1, . . . , tn)
is in A.

The set of L-formulas is the smallest set F such that

(i) every atomic L-formula is in F;
(ii) if φ ∈ F, then ¬φ ∈ F;
(iii) if φ and ψ are in F, then (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ) and (φ←→ ψ) are in F;
(iv) if φ is in F and xi is a variable, then ∃xi φ and ∀xi φ are in F.

For example, x1 + (x2 × (x1 + 1)) is an Lor-term, x1 × (x2 + x3) = x1 + 1 and
x1 < x3+x7 are atomic Lor-formulas, and ∃x1 (x1×(x2+x3) = x1+1 ∧ x2 < x1)
is an Lor-formula.

Bibliographical Notes

The following are good basic texts: [Chang and Keisler 1990; Hodges 1993;
1997; Poizat 1985; Sacks 1972]. For an introduction to the model theory of
algebraically closed, real closed, differentially closed and separably closed fields,
see [Marker et al. 1996]. Proofs of Theorem 7.1 can be found in the same volume
or in [Poizat 1989]. A proof of 7.2 can be found in [Poizat 1987].
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