
CH 204: Chemical Reaction Engineering - lecture

notes

January-April 2010
Department of Chemical Engineering

Indian Institute of Science
Bangalore 560 012





Contents

1 Introduction page 1

2 Review of background material 8

References 49

iii



1

Introduction

Levenspiel (2004, p. iii) has given a concise and apt description of chemical

reaction engineering (CRE):

Chemical reaction engineering is that engineering activity concerned with the ex-
ploitation of chemical reactions on a commercial scale. Its goal is the successful
design and operation of chemical reactors, and probably more than any other ac-
tivity, it sets chemical engineering apart as a distinct branch of the engineering
profession.

The ingredients of CRE are (i) thermodynamics, (ii) kinetics, (iii)

tranport processes, (iv) types of reactors, (v) mode of operation and con-

tacting, (vi) modelling and optimization, and (vii) control. These topics are

briefly discussed below.

1.1 Thermodynamics

1.1.1 Feasibility of the reaction

The standard free energy of formation ∆G0 of gaseous NO at a temperature

T = 298 K and a reference pressure p0 = 1 atm is 86.6 kJ/mol. Consider a

closed system that initially contains a mixture of N2 and O2, and is main-

tained at a constant temperature T and a pressure p = p0. Consider the

reaction
1

2
N2(g) +

1

2
O2(g) 
 NO(g) (1.1)

Here the notation “(g)” implies that the species is present in the gas phase.

Similarly, “(l)” and “(s)” will be used to denote species present in the liquid

and solid phases. respectively. Some NO will be formed by (1.1), but the

equilibrium mole fraction of NO (yNO,e) is � 1 as ∆G0/(R T ) � 1. Here R

1
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is the gas constant, and yNO,e is the mole fraction attained at long times.

Hence we say that the reaction is not feasible under these conditions. The

conversion increases as T increases, but is less than 1 % even at T = 1780

K and p = 1 atm. Hence alternative reactions, such as the oxidation of NH3

must be used to produce NO (Chatterjee and Joshi, 2008).

1.1.2 The heat of reaction

The sign of the heat of reaction ∆H determines whether the reactor should

be heated or cooled. The former applies for endothermic reactions (∆H >

0), and the latter for exothermic reactions (∆H < 0). The magnitude of

∆H determines the amount of heating or cooling required.

1.1.3 Allowance for thermodynamic non-idealities

For gaseous reactions at high pressure or low temperature, the equilibrium

constant Kp, which is based on partial pressures, must be replaced by the

equilibrium constant Kf , which is based on fugacities (Denbigh, 1971, p. 152,

see also section 2.8). For example, consider the ammonia synthesis reaction

N2(g) + 3H2(g) 
 2NH3(g) (1.2)

At T = 450◦C, the value of Kp is 6.64 ×10−3 at p = 10 atm and 8.84

×10−3 at p = 300 atm (Denbigh, 1971, p. 152). Thus Kp varies with the

pressure, whereas the value of Kf is approximately constant in this pressure

range - it is 6.5 ×10−3 at p = 10 atm and 6.6 ×10−3 at p = 300 atm. The

slight variation of Kf is caused by the use of approximate expressions for the

fugacities, based on the Lewis and Randall rule. Given the value of ∆G0, we

can calculate Kf , and using the thermodynamic relations between fugacities

and partial pressures, the equilibrium composition can be calculated.

Similarly, for a liquid phase reaction involving the synthesis of methyl

tert-amyl ether (an additive for high octane gasoline) from methanol and

2-methyl-2-butene, the calculated activity coefficient for methanol is in the

range 6.4-7.7 at T = 298 K (Heintz et al., 2007).

1.2 Reactions and kinetics

1.2.1 Classification of reactions

Reactions may be classified by (a) the number of phases involved, (b) the

presence or absence of a catalyst, and (c) the nature of the overall reaction.
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If all the reactants and products, and catalysts, if any, are in a single

phase, the reaction is said to be homogeneous. An example is provided by

the thermal cracking of ethane to ethylene (Froment and Bischoff, 1990,

p. 29)

C2H6(g) 
 C2H4(g) + H2(g) (1.3)

On the other hand, if more than one phase is involved, the reaction is said to

be heterogeneous. An example is provided by the chemical vapour deposition

(CVD) of Si on a substrate (Fogler, 1999, p. 675)

SiH4(g) → Si(s) + 2H2(g) (1.4)

(silane)

Equation (1.3) represents a non-catalytic reaction, whereas ammonia

synthesis involves a solid catalyst. In some cases, a homogeneous catalyst

may be involved. For example, an enzyme called glucose isomerase catalyzes

the isomerization of glucose to fructose in the liquid phase (Fig. 1.1).

Fig. 1.1. Isomerization of glucose to fructose. Adapted from Schmidt (2005, p. 24).

Schmidt (2005, p. 24) notes that this is the largest bioprocess in the chemical

industry. As fructose is five times sweeter than glucose, the process is used

to make high-fructose corn syrup for the soft drink industries.

The overall reaction, as written, may represent either an elementary
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reaction or a non-elementary reaction. An example of the former is given

by the gas-phase reaction (Laidler, 2007, p. 138)

NO2(g) + CO(g) 
 NO(g) + CO2(g) (1.5)

Here NO is formed by the collision between molecules of NO2 and CO, and

the rate expression conforms to the stoichiometry shown. On the other

hand, (1.4) represents a non-elementary reaction, as it actually proceeds by

the sequence of reactions shown below (Fogler, 1999, p. 666).

SiH4(g) 
 SiH2(g) + H2(g)

SiH2(g) + ∗ → SiH2 ∗
SiH2∗ → Si(s) + H2(g) (1.6)

where * represents an active site on the substrate.

1.2.2 The rate expression

The rate expression provides information about the rate at which a reactant

is consumed. The rate is usually expressed per unit volume of the fluid for

fluid-phase reactions, and per unit area (or unit mass) of the catalyst for

reactions involving solid catalysts. For example, the rate of formation of Si

by the mechanism (1.6) is given by

ṙSi =
k pSiH4

pH2
+ K pSiH4

(1.7)

where pSiH4
and pH2

are the partial pressures of SiH4 and H2, respectively.

Equation (1.7) can be derived from (1.6) by assuming that the reac-

tions follow mass action kinetics and invoking some other assumptions.

1.2.3 Alternative catalysts or alternative routes

The conventional process for the manufacture of 5-cyanovaleramide (an in-

termediate for a herbicide) by the hydrolysis of adiponitrile (Fig. 1.2) used

MgO as a catalyst (Pereira, 1999). The catalyst was difficult to recover and

reactivate, and the conversion had to be limited to 20 % to avoid a low

selectivity. An alternative process based on a supported enzyme catalyst

gave a high conversion and a high selectivity.
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Fig. 1.2. Conversion of adiponitrile to 5-cyanovaleramide.

1.3 Transport processes

1.3.1 Balance equations

For fluid-phase reactions, continuum equations are usually used. If the re-

actions involve two phases that are stratified, as in the case of a gas-liquid

reaction in a falling-film reactor, separate equations can be written for each

of the phases. If one phase is dispersed in the other, as in the case of stirred

liquid-liquid dispersions or fluidized beds, we can either write separate equa-

tions for each phase, or use some form of explicit or implicit averaging to

write continuum equations for each phase (see. for example, Jackson, 2000,

Yu et al., 2007).

1.3.2 Constitutive equations

For a fluid phase consisting of simple fluids such as air or water, the Navier-

Stokes equations are commonly used to describe momentum transfer, with

Fourier’s law for heat conduction. Diffusion is described either by Fick’s law

for binary mixtures, or by the Maxwell-Stefan equations for multicomponent

mixtures. For a stationary solid phase such as a bed of catalyst pellets, the

momentum balance is not required. However, Fourier’s law and Fick’s law
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have to be modified by replacing the thermal conductivity and diffusivity by

the “effective” thermal conductivity and “effective” diffusivity, respectively.

For dispersed multiphase systems, constitutive equations are more

complicated, and not as firmly established as for single-phase systems.

1.4 Types of reactors

1.4.1 Ideal reactors

The adjective ideal refers to the state of mixing in the reactor. It is assumed

to be perfect in the case of ideal batch, semi-batch, and continuous stirred

tank reactors. The plug flow reactor corresponds to the assumption of perfect

mixing in the radial direction, no mixing in the axial direction, and a flat

axial velocity profile. As discussed in Levenspiel (2004, pp. 283-287, 321-

334) and Fogler (1999, pp. 873-876, 893-904) a sequence of ideal reactors

can sometimes be used to model nonideal reactors.

1.4.2 Actual reactors

In addition to the conventional stirred vessels, “empty” tubular reactors,

and packed beds, there are many other types of reactors such as fluidized

beds (Lee and Li, 2009), trickle beds (Wu et al., 2009), fluidized catalytic

crackers (Yang et al., 2009), bubble columns (Tokumura et al., 2009), mem-

brane reactors (Rahimpour and Ghader, 2004), microchannel reactors (Wang

et al., 2009), and multifunctional reactors (Fan et al., 2009; Agar, 1999). The

references in brackets represent recent articles discussing such reactors.

1.5 Mode of operation and contacting

Reactors can be operated either in batch, semi-batch or continuous modes.

The first two modes cause the concentrations of the species to vary with

time, whereas the latter can be operated in either a steady or unsteady

manner. Usually, startup, shutdown, and disturbances in feed flow rate, etc.

lead to unsteady operation. For some systems, it may be advantageous to

deliberately operate in an unsteady manner to achieve higher selectivity or

conversion. For example, Sotowa et al. (2008) examined the effect of forced

temperature cycling of a catalyst layer on propylene (C3H6) oxidation. They

found the forced operation led to a higher time-averaged conversion than

steady state operation, for the same rate of consumption of energy. The



Introduction 7

bombardier beetle provides an example of a natural system that relies on

forced periodic operation (Aneshansley et al., 1969).

For multiphase reactors, several modes of contacting, such as cocur-

rent, countercurrent, and cross-flow are possible. Gillou et al. (2008) ex-

amined the effect of introducing H2 at various points along the length of

a microchannel reactor on the conversion of CO to hydrocarbons by the

Fischer-Tropsch process. Compared to the introduction of H2 along with

CO at the inlet of the reactor, an increase in selectivity was obtained for

some hydrocarbons.

1.5.1 Modelling, control, and optimization

A mathematical model of the reactor permits prediction of the conversion,

selectivity (for systems with multiple reactions), flow patterns and hot spots

or regions of high temperature. The effect of changes in operating conditions

can also be examined. The availability of a model permits the development

of suitable control schemes to ensure product quality, and also provides a

valuable aid for the optimization of parameters or operating policies to sat-

isfy specific objective functions. For example, Altinten et al. (2008) modelled

a batch reactor used for the production of polystyrene. Using a suitable con-

trol scheme, the reactor temperature was varied with time so as to follow an

“optimum” profile. This ensured that a polymer of the desired molecular

weight was obtained in the minimum possible time.
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Review of background material

2.1 Representation of reactions

The following notation will be used to represent irreversible and reversible

reactions:

A + B → C irreversible

A + B 
 C reversible (2.1)

Let Ai, i = 1, N represent N species participating in a single reaction

a1 A1 + a2 A2 + ... 
 am Am + ...aN AN

where ai represents the number of moles of species Ai. The reaction can be

written compactly as

ΣN
i=1νj Aj = 0

where νj is the stoichiometric coefficient for Aj. The usual convention is

vj < 0, for reactants; vj > 0, for products

For a reversible reaction, a species may be either a product or a reactant,

depending on the direction in which the reaction proceeds. In such a case,

the signs for the νi are chosen in the usual manner, i.e. assuming that the

reaction proceeds from left to right. In case the reaction proceeds in the

opposite direction, the expression for the reaction rate will change sign and

the signs of the νj can be left unchanged.

The above notation can be readily extended to multiple reactions.

If N species participate in M reactions, the reactions can be represented by

N
∑

j=1

νij Aj = 0, i = 1,M

8
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where νij is the stoichiometric coefficient for the jth species participating in

the ith reaction.

2.2 The condition for reaction equilibrium

Consider an isolated system in which the reaction A1 + A2 
 A3 occurs.

(An isolated system is one that does not interact with its surroundings. In

particular, there is no transfer of heat, mass, or work between the system

and the surroundings.) The second law of thermodynamics states that all

changes or processes occurring in an isolated system must satisfy

dS

dt
≥ 0 (2.2)

where S is the total entropy of the system and t is the time. The system is

said to be at an equilibrium state if

dS

dt
= 0

If we start with a binary mixture of A1 and A2, A3 will be produced

as the reaction proceeds. In accord with (2.2), S must either increase or

remain constant. The expected variation of the entropy S and the molar

concentration c1 of A1 with t is sketched in Fig. 2.1. The quantities Se and

C1e represent the equilibrium values of S and C1, respectively.

It follows from the above discussion that S is a maximum at an

equilibrium state of an isolated system. In thermodynamics, an isolated

system is defined as one that has a constant volume V and a constant

internal energy U . Hence the equilibrium state corresponds to one that

implies a maximum of S at constant U and V .

In reaction engineering, it is convenient to work with a closed system,

rather than an isolated system. (A closed system is one that does not

exchange mass with the surroundings.) We shall now derive the condition for

the equilibrium state of a closed system in terms of a suitable thermodynamic

quantities. The material below has been adapted from Denbigh (1971, p. 67-

69).

Consider a closed system in contact with a heat reservoir that is

maintained at a constant temperature Tr. Treating the system and the

reservoir as an isolated compound system, the second law implies that

∆S + ∆Sr ≥ 0 (2.3)

where ∆S and ∆Sr are the entropy changes of the system and the reservoir,
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Fig. 2.1. Variation of the total entropy of the system S and the concentration of
species 1 c1 with the time t in an isolated system. The quantities Se and c1e

represent the equilibrium values of S and c1, respectively.

respectively. If ∆Q is the heat absorbed by the system from the reservoir,

we have

∆Sr = −(∆Q)/Tr (2.4)

regardless of whether the heat transfer is reversible or irreversible. The first

law of thermodynamics implies that

∆U = ∆Q − ∆W (2.5)

where ∆U is the change in internal energy of the system and ∆W is the
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work done by the system on the surroundings. Equations (2.3)-(2.5) imply

that

Tr ∆S − (∆U + ∆W ) ≥ 0

or, adding and subtracting ∆(p V ), where p is the pressure of the fluid

∆(U + p V − Tr S) ≤ −∆W + ∆(p V ) (2.6)

Consider a special case where the initial state 1 and the final state

2 of the system are such that (i) T1 = T2 = Tr ≡ T , and (ii) p1 = p2 ≡ p.

Noting that the Gibbs free energy is defined by

G ≡ U + p V − T S (2.7)

(2.6) reduces to

∆G|T,p ≤ −(∆W − p∆V ) ≡ −∆W ′ (2.8)

where ∆W ′ is the work done by the system, excluding that due to volume

change. (For a solid phase, the work due to volume change is not given by

p∆V . However, the final result (2.9) is unaltered (Callen, 1985, p. 305).)

If ∆W ′ = 0, (2.8) reduces to

∆G|T,p ≤ 0 (2.9)

Hence the Gibbs free energy G must either remain constant or decrease for

all changes in a closed system maintained at constant T, p, and G must be

a minimum at equilibrium.

In order to relate (2.9) to measurable quantities such as temperature,

pressure, and composition, we use the Gibbs equation. For a single-phase

system containing N species, the Gibbs equation is given by

dG = V dp − S dT +
N

∑

i=1

µi dni (2.10)

where

µi ≡
(

∂G

∂ni

)

T, p, nj 6=i

(2.11)

is the chemical potential of species i, and ni is the number of moles of species

i.

Consider a single reaction occurring in a closed system containing a
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fluid, and assume that there are no spatial gradients. Then the mass balances

are given by

dni

dt
= V νi ṙ, i = 1, N (2.12)

where V is the volume of the system and ṙ is the reaction rate for this

reaction. For fluid-phase systems, the usual dimensions of ṙ are moles/unit

volume/unit time. Even though there are N equations of the form (2.12),

there is only one independent reaction. Hence, as suggested by de Donder

(1922) (cited in Laidler, 2007, p. 7), all the {ni} can be expressed in terms

of a variable ξ, called the extent of reaction. Let

ni = ni0 + νi ξ, i = 1, N (2.13)

where ni0 is the initial (i.e. at time t = 0) number of moles of i. Equations

(2.13) and (2.12) imply that

dξ

dt
= V ṙ (2.14)

with the initial condition ξ(0) = 0.

Expressing the mole numbers in terms of the extent of reaction,

(2.10) can be written as

dG = V dp − S dT +
N

∑

i=1

µi νi dξ (2.15)

As G must be a minimum at an equilibrium state of a closed system main-

tained at constant (T, p), we must have
(

∂G

∂ξ

)

T,p

= 0

or
N

∑

i=1

µi νi = 0 (2.16)

and
(

∂2G

∂ξ2

)

T,p

> 0

or
N

∑

i=1

(

∂µi

∂ξ

)

T,p

νi > 0 (2.17)

Equation (2.16) represents the condition for reaction equilibrium. It
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holds even if the system contains more than one phase, and the reaction

involves components in different phases (Denbigh, 1971, p. 140).

The affinity of the reaction is defined by

Ã ≡ −
N

∑

i=1

µi νi (2.18)

Equation (2.15) implies that

(

∂G

∂ξ

)

T,p

= −Ã (2.19)

Hence if Ã > 0, G decreases as the extent of reaction ξ increases, and the

reaction proceeds from left to right.

2.3 Models for the chemical potential

Equation (2.15) can be used to compute the equilibrium composition for

a single reaction in a closed system, provided a model is available for the

dependence of the chemical potentials {µi} on temperature T , pressure p,

and composition. Some models are discussed briefly below. For more details,

the reader is referred to Denbigh (1971, pp. 111-115, 125-126, 249, 270-271)

and Smith et al. (2001, pp. 384, 390, 577).

(a) The perfect gas mixture

The perfect gas mixture is defined as one for which (Denbigh, 1971,

p. 115)

µi(T, p,y) ≡ µi0(T, p0) + R T ln

(

p yi

p0

)

, i = 1, N (2.20)

where y is the vector of N − 1 independent mole fractions yi, i = 1, N − 1,

µi0 is the chemical potential of pure i at a temperature T and a reference

pressure p0, R is the gas constant, yi is the mole fraction of species i, and

p is the total pressure of the mixture. The use of (2.20) along with suitable

thermodynamic relations leads to the following familiar results for a perfect

gas mixture

p V = nR T ; pi ≡ p yi = ni R T/V, i = 1, N (2.21)

where V is the volume occupied by the mixture, pi is the partial pressure of



14

i, ni is the number of moles of species i, and

n ≡
N

∑

i=1

ni

is the total number of moles.

(b) The ideal solution

The ideal solution is defined by (Denbigh, 1971, p. 249)

µi(T, p,y) ≡ µi0(T, p) + R T ln(yi), i = 1, N (2.22)

where µi0 is the chemical potential of pure i at (T, p). Equation (2.22) can

be used for ideal gaseous, liquid, or solid solution.

(c) The non-ideal solution

To account for non-ideal behaviour, (2.22) is modified by introducing

a variable γi, called the activity coefficient, such that (Denbigh, 1971, p. 270)

µi(T, p,y) ≡ µi0(T, p) + R T ln(γi yi), i = 1, N (2.23)

Note that µi0 is independent of the composition, and the composition de-

pendence of µi is accounted for solely by the term γi yi. The value of µi0

can be fixed by choosing a convention for γi. If all the species forming the

solution remain in the same phase as the solution in their pure states at

(T, p), the usual convention is

γi → 1 as yi → 1 (2.24)

In this case, µi0 is the chemical potential of pure i at (T, p).

Consider a liquid solution, and let i = 1,m denote species that re-

main as liquids in their pure states at (T, p). The other species (i = m+1, N)

are either gases or solids in their pure states at (T, p). Convention (2.24)

applies to the first m species, and hence

γi → 1 as yi → 1, i = 1,m (2.25)

For the other species, the usual convention is

γi → 1 as yi → 0, i = m + 1, N (2.26)

For i = m + 1, N , µi0 is the chemical potential of pure i in a hypothetical

liquid state. It is a hypothetical state as pure i will not, by definition, be in

a liquid state at (T, p).

Equation (2.23) can be used for gaseous, liquid, or solid solutions.



Review of background material 15

Additional details regarding the determination and use of activity coeffi-

cients may be found in Denbigh (1971, pp. 281-288), Prausnitz et al. (1999,

pp. 222-236), and Sandler (2006, pp. 419-461).

Remarks

1. The activity of a species i is defined by Denbigh (1971, p. 287)

ai(y) ≡ γi yi (2.27)

where the subscript y indicates that mole fractions are used as a measure of

the composition of the mixture, and γi is the activity coefficient based on

mole fractions. For some applications, it is convenient to replace yi in (2.27)

by some other measures of the composition, such as the molar concentration

ci or the molality ĉi. Here ĉi is the number of moles of i per kg of the solvent.

The molality is often used for electrolyte solutions (Prausnitz et al., 1999,

p. 218).

Thus we have

ai(c) ≡
γi(c) ci

ci0

ai(ĉ) ≡
γi(ĉ) ĉi

ĉi0
(2.28)

As the activity is a dimensionless quantity, (2.28) involve a reference compo-

sition characterized by ci0 or ĉi0. For ions and molecules dissolved in water,

the usual reference composition is (Sawyer et al., 2003, p. 31, Sandler, 2006,

p. 712)

ci0 = 1M (i.e. 1 mol/L), ĉi0 = 1 mol/kg of water (2.29)

For the solvent, and for pure liquids and solids in equilibrium with an aque-

ous solution, the usual reference state is the concentration or molality of the

pure component

ci0 = ci, pure; ĉi0 = ĉi, pure (2.30)

The conventions adopted for γi(c) and γi(ĉ) are similar to those used for γi.

For example, consider a liquid mixture and a solute i that is not a liquid at

the same (T, p) as the solution. Then the convention is that

γi(c) → 1 as ci → 0 (2.31)

In terms of the activities, (2.23) can be rewritten as

µi ≡ µi0(T, p) + R T ln ai(y) (2.32)

≡ µi0(c)(T, p) + R T ln ai(c) (2.33)
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≡ µi0(ĉ)(T, p) + R T ln ai(ĉ) (2.34)

2. For gas mixtures, it is common practice to use fugacities instead of

activity coefficients. Thus (2.23) can be rewritten as Denbigh (1971, p. 125)

µi(T, p,y) ≡ µi0(T, p0) + R T ln

(

fi

fi0

)

, i = 1, N (2.35)

where fi is the fugacity of species i and µi0 and fi0 are the chemical potential

and fugacity, respectively, of pure i at a temperature T and a reference

pressure p0. A common choice for fi0 is fi0(T, p0) = 1 atm, in which case

p0 is the pressure for which the fugacity of pure i is 1 atm. As noted by

Denbigh (1971, p. 123), if p ≤ 1 atm, fi0 ≈ p0 for most gases. Thus the

choice fi0 = 1 atm implies that p0 ≈ 1 atm.

As in the case of (2.23), (2.35) can be used for gaseous, liquid, and

solid solutions.

3. In accord with the experimental observation that the mixture should

behave like a perfect gas mixture in the limit p → 0, (2.20) and (2.35) imply

that

lim
p→0

fi

fi0
=

p yi

p0
(2.36)

Thus the fugacity is proportional to the partial pressure pi ≡ p yi at low

pressures.

4. For an ideal solution, (2.22) and (2.35) imply that

R T ln

(

fi

fi0 yi

)

= µi0(T, p) − µi0(T, p0) (2.37)

As the right hand side is independent of the composition, its value remains

unchanged in the limit yi → 1. Hence (2.37) implies that

fi

fi0 yi
= lim

yi→1

fi

fi0 yi
=

fi,pure

fi0

or

fi = fi,pure yi (2.38)

Equation (2.38) is called the Lewis and Randall rule.
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2.4 The equilibrium constant and the equilibrium composition

For a single reaction in a single phase system, the condition for reaction

equilibrium is (see (2.17))

N
∑

i=1

µi νi = 0 (2.39)

For a perfect gas mixture, (2.39) and (2.20) imply that

N
∑

i=1

µi0 νi = −R T ln

[

N
∏

i=1

(

pie

p0

)νi

]

(2.40)

where pie is the equilibrium value of the partial pressure pi of species i. The

equilibrium constant is defined by

Kp ≡
N
∏

i=1

(

pie

p0

)νi

=

N
∏

i=1

(

p yie

p0

)νi

(2.41)

where yie is equilibrium mole fraction of species i. Introducing the standard

Gibbs free energy change for the reaction

∆G0 ≡
N

∑

i=1

µi0(T, p)) νi (2.42)

(2.40) can be rewritten as

∆G0 − R T lnKp (2.43)

Equations (2.42) and (??) imply that Kp is independent of the pressure p

and Kp = Kp(T ). This is true only for a perfect gas mixture. For a non-ideal

gas mixture, Kp is still defined by (2.41), but (2.43) is not valid.

The equilibrium composition in a closed system at constant (T, p)

can be calculated as follows. For ease of discussion, consider a perfect gas

mixture. Using tables of thermodynamic properties, values of ∆G0 can be

calculated for most reactions. The value of Kp then follows from (2.43). As

yie = nie/ne (2.44)

where nie and ne are the number of moles of species i and the total number

of moles, respectively, at equilibrium, (2.41) can be rewritten as

Kp =

N
∏

i=1

(

pnie

p0 ne

)νi

(2.45)
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or using (2.13)

Kp =
N
∏

i=1

[(

p

p0

) (

ni0 + νi ξe

n0 + (∆ν) ξe

)]νi

(2.46)

Here ξe is the extent of reaction at an equilibrium state, and n0 ≡
∑N

i=1 ni

and ∆ν ≡ ∑N
i=1 νi are the total number of moles at the initial state and

the change in the number of moles accompanying the reaction, respectively.

Equation (2.46) represents a nonlinear equation for the extent of reaction

ξe. Except in simple cases, the equation must be solved iteratively.

2.5 The effect of temperature on the equilibrium composition of

a perfect gas mixture

Taking the logarithm of (2.45) and using (2.43), we obtain

−∆G0

R T
= lnKp =

N
∑

i=1

νi ln

(

pnie

p0 ne

)

(2.47)

Differentiating (2.47) with respect to T , and using (2.13), we obtain

d

dT

(

−∆G0

R T

)

=
d

dT
(lnKp) =

N
∑

i=1

[

νi

nie

dnie

dξe
− νi

ne

dne

dξe

]

dξe

dT
(2.48)

Substituting for ∆G0 from (2.42), we obtain

d

dT

(

−∆G0

R T

)

== −
N

∑

i=1

νi

R

d

dT

(µi0

T

)

=
∆H0

R T 2
(2.49)

where

∆H0 ≡
N

∑

i=1

νi hi0 (2.50)

is the standard enthaply change for the reaction and hi0 is the molar enthalpy

of pure i at (T, p0). Hence (2.48) reduces to van’t Hoff’s equation

d

dT
(lnKp) =

∆H0

R T 2
(2.51)

As ni = ni(ξ), (2.13) and (2.48) imply that

d

dT
(lnKp) =

[

N
∑

i=1

ν2
i

nie
− (∆ν)2

ne

]

dξe

dT
(2.52)
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Using (2.52), (2.51) can be rewritten as

∆H0

R T 2
=

[

N
∑

i=1

ν2
i

nie
− (∆ν)2

ne

]

dξe

dT
(2.53)

The Schwarz inequality (see, for example, Arfken and Weber, 2001, p. 607)

can be used to show that the quantity in square brackets on the right hand

side of (2.53) is always positive. Hence dξe/dT has the same sign as ∆H0.

An exothermic reaction is defined as one for which ∆H0 < 0. In this

case, dξe/dT < 0, and hence the equilibrium extent of reaction decreases as

T increases. If species i is a reactant, its conversion Xi, defined by

Xi ≡
ni0 − ni

ni0
(2.54)

is directly proportional to the extent of reaction ξ. Hence Xi also decreases

as T increases. Conversely, for an endothermic reaction, the equilibrium

conversion increases as T increases.

Remark Consider a chemical reaction in closed system, whose volume V

changes suitably to maintain constant (T, p). If the state of the system

changes from state 1 to state 2 as the reaction proceeds, the enthalpy change

of the system is given by

∆H = ∆U + ∆(p V ) = ∆U + p∆V

or, using the first law of thermodynamics, and assuming that work is asso-

ciated only with volume change

∆H = ∆Q (2.55)

where ∆Q is the heat absorbed by the system. Thus ∆H0 is the heat

absorbed by the system when the reactants are taken in stoichiometric pro-

portions, with each reactant at (T, p0), and are completely converted to

products, with each product at (T, p0) (Denbigh, 1971, p. 142).

2.6 The effect of pressure on the equilibrium composition of a

perfect gas mixture

Differentiating (2.47) with respect to p, we obtain

∂

∂p
(lnKp) = 0 =

[

N
∑

i=1

ν2
i

nie
− (∆ν)2

ne

]

∂ξe

∂p
+

∆ν

p
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or
∂ξe

∂p
= − ∆ν

p
[

∑N
i=1

ν2

i

nie
− (∆ν)2

ne

] (2.56)

If the reaction is accompanied by an increase in the number of moles, i.e.,

∆ν > 0, (2.56) implies that ∂ξe/∂p < 0. Hence the equilibrium conversion

decreases as p increases. Conversely, if ∆ν > 0, the conversion increases as

p increases.

Remark Equations (2.53) and (2.56) are quantitative expressions of Le Chate-

lier’s principle (Atkins and de Paula, 2002, p. 234): “A system at equilib-

rium, when subjected to a disturbance, responds in a way that tends to

minimize the effect of the disturbance.”

2.7 Feasibility of reactions

As mentioned in section 2.2, a reaction proceeds from left to right if

Ã = −
N

∑

i=1

µi νi > 0

The computation of Ã requires a knowledge of T, p, and the composition.

A rough idea of the direction in which the reaction is likely to occur may

be obtained by calculating the standard free energy change for the reaction

∆G0 =
∑N

i=1 µi0(T, p0) νi. Large negative values of ∆G0 imply that the

reaction is promising, i.e. it is likely to proceed from left to right. On

the other hand, large positive values of ∆G0 imply that the reaction is not

promising, i.e. it is likely to proceed from right to left.

Equation (2.43) implies that if ∆G0 � 0, Kp is � 1. To understand

the effect of Kp on the conversion, it is helpful to rewrite (2.46) as

lnKp = q ≡
N

∑

i=1

νi [ln(ni0 +νi ξe)− ln(n0 +(∆ν) ξe)]+(∆ν) ln(p/p0) (2.57)

At a fixed value of p, if Kp increases, (2.57) implies that ξe increases, as

∂q/∂ξe > 0. Conversely, if Kp � 1, we may expect ξe to be small. However,

if the initial mixture contains only the reactants, the equilibrium value of ξe

will be small but non-zero even if ∆G0 � 0.

Dodge (1944) has listed the following thumb rules: (a) if ∆G0 (298

K, 1 atm) < 0, the reaction is promising, (b) if 0 < ∆G0 < 40 kJ/mol, a

more detailed examination is warranted, and (c) if ∆G0 > 40 kJ/mol, the
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reaction is very unlikely. For example, consider the synthesis of NO from

N2 and O2. For this reaction, ∆G0 = 86.6 kJ/mol of NO, whereas for the

synthesis of NH3 by the reaction

1

2
N2 (g) +

3

2
H2 (g) 
 NH3 (g) (2.58)

∆G0 = −17 kJ/mol of NH3. Hence the thumb rules suggest that very little

NO will be formed.

2.8 Reaction equilibrium in an imperfect gas mixture

Using the model (2.35) for the chemical potential and the condition for

reaction equilibrium (2.16), we obtain

N
∑

i=1

µi νi = 0

or

R T lnKf = −∆G0(T, p0) (2.59)

where

Kf ≡
N
∏

i=1

(

fie

fi0

)νi

(2.60)

is the equilibrium constant based on fugacities and fie is the equilibrium

value of the fugacity of species i.

For an imperfect gas mixture, it is Kf and not Kp that is independent

of the pressure p. This point is illustrated by the data of Larson and Dodge

(cited in Denbigh, 1971, p. 152). As p increases from 10 atm to 300 atm,

Kp increases by 34 % of the smaller value, whereas Kf increases by only 1.5

%. The small variation of Kf occurs because of the errors introduced by

using the Lewis and Randall rule (2.38) to estimate the fugacities {fi}. For

p > 300 atm, the variation of Kf is more pronounced.

2.9 Reaction equilibrium in a liquid mixture

If (2.23) is used as a model for the chemical potential, (2.39)implies that

N
∑

i=1

µi0 νi = −R T lnKγ Ky (2.61)
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where

Kγ ≡
N
∏

i=1

γνi

i ; Ky ≡
N
∏

i=1

yνi

i (2.62)

Equation (2.61) can be used to calculate the equilibrium composition

provided the values of the {µi0} are known. For solutes that are not liquids

at the same (T, p) as the solution, (2.26), (2.27), and (2.32) imply that µi0 is

the chemical potential of pure i in a hypothetical liquid state. However, the

values tabulated for such solutes often correspond to a hypothetical ideal

solution of unit molality. In such cases, activities defined on the molality

scale may be used. Equations (2.34) and (2.29) imply that µi0(ĉ)(T, p) is the

chemical potential of i in a hypothetical ideal solution of unit molality. Fur-

ther, as noted by Denbigh (1971, p. 294), the effect of pressure on the liquid

and solid phases may usally be neglected, unless it is very high compared to

the standard pressure p0 = 1 atm. Hence

µi0(ĉ)(T, p) ≈ µi0(ĉ)(T, p0) (2.63)

and the tabulated value of the standard Gibbs free energy of formation of i

may be used for µi0(ĉ)(T, p).

2.10 Reaction equilibrium in systems involving multiple phases

Consider the thermal decomposition of caclium carbonate (Denbigh, 1971,

p. 156)

CaCO3 (s) 
 CaO (s) + CO2 (g) (2.64)

The partial pressure of CO2, pCO2
can be related to the standard Gibbs free

energy change for the reaction as follows.

The condition for reaction equilibrium is

−µCaCO3
(s) + µCaO (s) + µCO2

(g) = 0 (2.65)

Assuming that both CaCO3 (s) and CaO (s) have negligible vapour pres-

sures, only CO2 will be present in the vapour phase. Treating it as a perfect

gas, we have

µCO2
(g) = µ0,CO2

(T, p0) + R T ln(pCO2
/p0) (2.66)

Using (2.66), (2.67) reduces to

−µCaCO3
(s) + µCaO (s) + µ0,CO2

(g) = −RT ln(pCO2
/p0) (2.67)
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To proceed further, we assume that CaCO3 (s) and CaO (s) form

immiscible solid phases, i.e. a phase contains either pure CaCO3 or pure

CaO. (The case where two solids are miscible and form a mixture or solid

solution is discussed in Sandler (2006, pp. 679-687).) Then µCaCO3
and µCaO

depend only on (T, p). For a pure phase, dµ = −sdT + v dp, where s and v

are the molar entropy and the molar volume, respectively, of the material.

Considering CaO and assuming that vCaO is approximately independent of

p, we obtain

µCaO(T, p) = µCaO(T, p0) + vCaO (p − p0) (2.68)

Using a similar expression for µCaCO3
,

µ0,CaO (s)(T, p0) + µ0,CO2 (g)(T, p0) − µ0,CaCO3 (s)(T, p0)

+(vCaO (s) − vCaCO3 (s)) (p − p0) = −RT ln(pCO2
/p0) (2.69)

As

∆G0 = µ0,CaO(s)(T, p0) + µ0,CO2 (g)(T, p0) − µ0,CaCO3 (s)(T, p0) (2.70)

(2.69) reduces to

∆G0 + (vCaO (s) − vCaCO3 (s)) (p − p0) = −R T ln(pCO2
/p0) (2.71)

The second term on the left hand side of (2.71) is usually negligible

compared to the first term. For example, ∆G0(298K, 1atm) = 135 kJ/mol,

whereas (vCaO (s) − vCaCO3 (s)) (p − p0) ≈ 0.2 kJ/mol for p − p0 = 100 atm.

Hence (2.71) may be approximated as

∆G0 ≈ −R T ln(pCO2
/p0) (2.72)

By analogy with (2.41), we may define a partial equilibrium constant

K ′

p ≡ pCO2

p0
(2.73)

Equation (2.72) permits evaluation of the pressure of CO2 (g) that is in

equilibrium with CaCO3 (s) and CaO (s). As noted by Denbigh (1971,

p. 158), if pCO2
/p0 > K ′

p, CaO will be converted to CaCO3.

Another example involving gaseous and liquid phases is given by the

formation of urea by the reaction (Denbigh, 1971, p. 294)

CO2(g) + 2NH3 
 CO(NH2)2(aq) + H2O (2.74)

Numbering the species from left to right in the above equation as 1-4, the
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values reported in the literature for the standard free energies of formation

are, in kJ/mol

µ10 = −394.4, µ20 = −16.64, µ30(ĉ) = −203.8, µ40(y) = −237.2 (2.75)

Hence the standard free energy change for the reaction (2.75) is

∆G0 ≡ µ40(y) + µ30(ĉ) − 2µ20 − µ10 = −13.32 kJ/mol (2.76)

and the condition for reaction equilibrium is

∆G0 = −R T ln

[

γ4 x4 γ3(ĉ) (ĉ3/ĉ30)

(f2/f20)2 (f1/f10)

]

(2.77)

2.11 Systems with multiple reactions

The discussion will be confined to a single phase system containing N species

participating in M reactions. For example. the following reactions occur

during the production of formaldehyde (HCHO) from methanol (CH3OH):

CH3OH 
 HCHO + H2

CH3OH +
1

2
O2 
 HCHO + H2O

HCHO 
 CO + H2

HCHO +
1

2
O2 
 CO + H2O

CO +
1

2
O2 
 CO2 (2.78)

We could also add the reaction

CH3OH 
 CO + 2H2

but it is not an independent reaction, as it can be obtained by adding the

first and the third reactions in (2.78).

It is useful to calculate the number of stoichiometrically independent

reactions NR. The value of NR permits examination of a system involving

NR reactions, rather than the original system of M ≥ NR reactions. A

method for calculating NR is explained below.

Consider the system of reactions

N
∑

j=1

νij Aj = 0, i = 1,M (2.79)
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where νij is the stoichiometric coefficient for the jth species in the ith reac-

tion. Let the stoichiometric matrix [ν] be defined by

[ν] = [νij ] (2.80)

Thus the element in the ith row and jth column of [ν] is νij . The number

of stoichiometrically independent reactions is given by

NR = rank([ν]) (2.81)

Here the rank of [ ν] is the maximum number of linearly independent rows

or columns of [ ν] (Kreyszig, 1993, p. 356-357); it can be found by Gaussian

elimination or Gauss elimination, as discussed in Aris (1999, p. 13) and in

books on numerical analysis (see, for example, Gerald and Wheatley, 1994,

pp. 113-115). The following example is taken from Aris (1999, pp. 13-14).

Consider the reactions involved in the formation of hydrogen bromide

(HBr):

Br2 → 2Br

Br + H2 → HBr + H

H + Br2 → HBr + Br

H + HBr → H2 + Br

2Br → Br2

(2.82)

The stoichiometric matrix is given by

ν =













−1 2 0 0 0

0 −1 −1 1 1

−1 1 0 1 −1

0 1 1 −1 −1

1 −2 0 0 0













The procedure is as follows.

(i) Rearrange the rows if necessary, so that the pivot ν11 6= 0. In the

present example, rearrangement is not required.

(ii) Divide the first row by ν11 so that the first row is now given by

ν1j = [1 − 2 0 0 0].

(iii) Using row operations, i.e. forming linear combinations of the other

rows with the first row, make all the elements in the first column
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(except ν11) equal to zero. Thus we obtain

ν
′ =













1 −2 0 0 0

0 −1 −1 1 1

0 −1 0 −1 1

0 1 1 −1 −1

0 0 0 0 0













(iv) Repeat steps 1-3, starting with ν22 as the pivot, and reducing νi2, i =

3, N to zero. The result is

ν =













1 −2 0 0 0

0 1 1 −1 −1

0 0 1 −2 0

0 0 0 0 0

0 0 0 0 0













As all the elements in the 3rd and 4th rows are zero, the process can

be stopped at this stage. The rank of ν is 3, the number of non-zero rows.

Hence (2.81) implies that the number of stoichiometrically independent re-

actions is NR = 3 in the present example.

2.12 Degrees of freedom for reactive systems

Suppose there are N species, P phases, and NR independent chemical reac-

tions. At an equilibrium state, the following conditions hold (Denbigh, 1971,

p. 187):

Tj = T1; pj = p1; µji = µ1i, j = 2, P ; i = 1, N (2.83)

Here Tj and pj are the temperature and pressure, respectively, of phase j

and µji is the chemical potential of species i in phase j. In addition, there

are NR conditions of reaction equilibrium, given by

N
∑

i=1

νli µ1i = 0; l = 1, NR (2.84)

Equations (2.83) and (2.84) constrain the values of the independent

intensive variables Ti, pi. i = 1, N and the mole fractions yji, j = 1, P, i =

1, N − 1. Here yji is the mole fraction of species i in phase j. Hence the

number of degrees of freedom F , i.e. the excess of the number of variables

over the number of constraints, is given by

F = (N − NR) − P + 2 (2.85)
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In the absence of chemical reactions, NR = 0. Hence (2.85) reduces to the

familiar phase rule.

In a solution containing electrolytes, the requirement of electrical

neutrality leads to an equation relating the concentrations of the ions. Hence

the value of F is reduced by unity, as discussed in Denbigh (1971, p. 188).

2.13 Notation for reaction kinetics

Let ṙi denote the molar reaction rate for species i, i.e. the moles of i produced

per unit volume per unit time. For a single reaction, it is convenient to

introduce an intrinsic molar reaction rate β̇, such that

ṙi = νi β̇ (2.86)

Similarly, for multiple reactions we set

ṙi =

NR
∑

j=1

νji β̇j (2.87)

where νji is the stoichiometric coefficient for species i in reaction j, β̇j is

the intrinsic molar reaction rate for reaction j , and NR is the number of

stoichiometrically independent reactions.

2.14 Elementary reactions and reaction mechanisms

The reaction

A1 + A2 → A3 (2.88)

is said to be an elementary reaction if a molecule of A3 is formed by direct

interaction or collision between one molecule of A1 and one molecule of

A2. The molecularity of an elementary reaction is the number of reactant

molecules participating in the reaction. Thus, for an elementary reaction of

the form (2.88), the molecularity is 2.

If the molecules of A1 and A2 move independently, the probability of

finding one molecule of A1 and one molecule of A2 at a given (macroscopic)

location is proportional to c1 c2, where ci is the molar concentration of Ai.

Thus it may be expected that

β̇ ∝ c1 c2 (2.89)

for the reaction (2.88). This assumption may break down if there are strong
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long-range interactions between A1 and A2. Even if such interactions are

ignored, (2.89) does not guarantee that (2.88) is an elementary reaction. For

example, consider the gas-phase reaction

H2(g) + I2(g) 
 2HI(g) (2.90)

It was found that

β̇ ∝ cH2
cI2 (2.91)

for the forward reaction and

β̇ ∝ c2
HI (2.92)

for the reverse reaction. Hence it was assumed till the early 1930’s that

(2.90) represented an elementary reaction. Subsequent work showed that

other mechanisms were also involved, depending on the temperature and

other conditions (Laidler, 2007, pp. 298-300). For example, iodine atoms

may be involved in some cases. Thus the reaction rate for (2.90) is consistent

with the assumption that it is elementary reaction, even though it is not.

A non-elementary reaction is one which proceeds by a sequence of

elementary reactions. The sequence is called the reaction mechanism. Given

a mechanism, the rate expression can be derived for a non-elementary reac-

tion. The success of the postulated mechanism depends partly on the degree

of agreement between the predicted and observed reaction rates. In some

cases, as for the reaction (2.90), several different mechanisms may lead to

the same rate expression. More information is then required to discriminate

between rival mechanisms.

An example of a non-elementary reaction is provided by the reaction

H2 (g) + Br2 (g) 
 2HBr (g) (2.93)

Bodenstein and Lind (1907) (cited in Laidler, 2007, p. 291 found that

β̇ =
k cH2

√
cBr2

1 + cHBr/(mcBr2)
(2.94)

where k and m are constants. The mechanism for this reaction was suggested

almost simultaneously by Christiansen (1919), Herzfeld (1919) and Polanyi

(1920) (all cited in Laidler, 2007, p. 291). The steps involved are

Br2 → 2Br initiation

Br + H2 → HBr + H propagation

H + Br2 → HBr + Br ”

H + HBr → H2 + Br ”
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Br + Br → Br2 termination (2.95)

Using suitable assumptions, the mechanism (2.95) leads to a rate expres-

sion that is identical in form to the observed rate expression (2.94). The

initiation, propagation, and termination steps are characteristic of chain re-

actions. Equation (2.95) involves the free radicals H and Br. (A free radical

is an atom or group of atoms having an unpaired electron (Morrison and

Boyd, 2002, p. 47).)

2.15 Rate expressions for homogeneous irreversible reactions

No reaction is truly irreversible, but under certain operating conditions, the

concentrations of the reactants may be negligible at an equilibrium state. In

such cases, the reaction is treated as an irreversible reaction. Some examples

of reactions which must be treated as reversible reactions under industrial

operating conditions are SO2 oxidation and the synthesis of NH3.

For a homogeneous fluid-phase reaction involving N species, the in-

trinsic reaction rate has the form

β̇ = β̇(T, p,x) (2.96)

where T is the absolute temperature, p is the total pressure, and x is the vec-

tor of independent mole fractions with components xi, i = 1, N−1. Equation

(2.96) can be rewritten as

β̇ = β̇(T, p, c′) (2.97)

or

β̇ = β̇(T, c) (2.98)

where c′ is a vector of molar concentrations with components c1, i = 1, N −
1 and c is the vector with components ci, i = 1, N . As an equation of

state f(T, p, c) = 0 relates T , p, and c, only N + 1 of these variables are

independent.

2.15.1 Special cases

(a) Power law kinetics

The intrinsic reaction rate is given by

β̇ = k(T )

N
∏

i=1

cqi

i (2.99)
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where qi is the order of the reaction with respect to the ith species. The

overall order of the reaction is given by

q =

N
∑

i=1

qi (2.100)

The function k(T ) is independent of the concentration, and hence is called

the rate constant.

As an example, consider the thermal cracking of propane (C3H8)

in the gas phase. A kinetic model proposed by Sundaram and Froment

(1977) involves nine reactions, three of which are listed below along with

rate expressions for the intrinsic reaction rates βi.

C3H8 → C2H4 + CH4; β̇ = k1 cC3H8
(2.101)

C3H8 
 C3H6 + H2; β̇ = k2 cC3H8
− k′

2 cC3H6
cH2

(2.102)

2C3H6 → 3C2H4; β̇ = k3 cC3H6
(2.103)

The above reactions are approximations to a more realistic scheme involv-

ing free radicals. Equations (2.102) and (2.103) are first order irreversible

reactions, whereas (2.103) is a reversible reaction of mixed order. At 800
◦C, the values of the rate constants in s−1 are k1 = 2.34 , k2 = 2.12, and

k3 = 0.72.

In (2.99), if qi < 0 for a product, the reaction is said to be product-

inhibited. This terminology is not restricted to power law kinetics, but is

used whenever an increase in the product concentration decreases the reac-

tion rate. For example, (2.94) shows that the forward reaction is inhibited

by HBr. If qi = 0 for a reactant Ai, the reaction is said to be zero order in Ai.

This condition is likely to hold when Ai is present in a large excess compared

to the other reactants, but it will break down at low concentrations.

(b) Mass action kinetics

The reaction

q1 A1 + q2 A2 → q3 (2.104)

is said to follow mass action kinetics if the intrinsic reaction rate is given by

(Guldberg and Waage, 1864, cited in Laidler, 2007, p. 2)

β̇ = k(T ) cq1

1 cq2

2 (2.105)

(c) Michaelis-Menten kinetics

These kinetics are often used to describe reactions catalyzed by en-

zymes. (An enzyme is usually a protein of high molecular weight, between
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15,000 and several million daltons (Shuler and Kargi, 2004, p. 57). A dalton

is the mass of a H atom, i.e. 1.66 × 10−27 kg.) For example, the enzyme

urease catalyzes the hydrolysis of urea (CO(NH2)2) (Laidler, 2007, p. 399)

CO(NH2)2 + H2O → CO2 + 2NH3 (2.106)

For a single reactant or substrate S (in addition to water) that is converted

to a product or products P by an enzyme E, the reaction is

S
E→ P (2.107)

Henri (1902) (cited in Kooijman, 2001) and Michaelis and Menten (1913)

postulated the following mechanism (Shuler and Kargi, 2004, p.60)

E + S 
 ES → E + P (2.108)

where ES denotes an enzyme-substrate complex. Assuming that the re-

versible reaction was at equilibrium, Henri (1902) and Michaelis and Menten

(1913) showed that for an ideal batch reactor, the rate of production of the

product was given by

β̇P =
k cE0

cS

km + cS
(2.109)

where cE0
= cE + cS is the initial concentration of the enzyme. Equation

(2.109) represents Michaelis-Menten kinetics, but it is not clear why Henri’s

name is usually not included.

Rate expressions similar to (2.109) are also used when gaseous re-

actants are catalyzed by a solid catalysts. These are discussed in section

2.18.5.

2.16 Rate expressions for homogeneous reversible reactions

Consider the reaction

m1 A1 + m2 A2 
 m3 A3 + m4 A4 (2.110)

If (2.110) follows power law kinetics, the intrinsic reaction rate is given by

β̇ = kf (T )
N
∏

1

c
qj

j − kb(T )
N
∏

1

c
qj ′

j (2.111)

where kf and kb are the rate constants for the forward and backward re-

actions and the {qj} and {q′j} are constants. If (2.110) follows mass action
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kinetics, the reaction rate is given by

β̇ = kf (T ) cm1

1 cm2

2 − kb(T ) cm3

3 cm4

4 (2.112)

2.17 Thermodynamic consistency of the rate expressions for

reversible reactions

For the reaction (2.110), the condition for reaction equilibrium in a closed

system at constant (T, p) is

m3 µ3 + m4 µ4 − m1 µ1 − m2 µ2 = 0 (2.113)

Considering a perfect gas mixture, (2.20) and (2.113) imply that

Kp(T ) ≡
(

p̃m3

3e p̃m4

4e

p̃m1

1e p̃m2

2e

)

=

(

c̃m3

3e c̃m4

4e

c̃m1

1e c̃m2

2e

) (

c∗ R T

p0

)∆m

(2.114)

where

p̃ie ≡ pie/p0; c̃ie ≡ cie/c∗; ∆m ≡ m3 + m4 − m1 − m2 (2.115)

pie and cie are the equilibrium values of the partial pressure and molar

concentration, respectively, of species i, and p0 and c∗ are the reference

pressure and the reference concentration, respectively.

The equilibrium constant based on concentrations Kc is defined by

Kc ≡
(

c̃m3

3e c̃m4

4e

c̃m1

1e c̃m2

2e

)

(2.116)

or for a general reaction by

Kc ≡
N
∏

i=1

c̃νi

ie (2.117)

Note that Kc is dimensionless. In some books (see, for example, Schmidt,

2005, p. 35), Kc appears to be a dimensional quantity, but is not, as c∗ has

been chosen as unity in the same units as the {ci}. Equations (2.116) and

(2.117) imply that

Kp = Kc

(

c∗ R T

p0

)∆m

(2.118)

Hence Kc = Kc(T ).
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If the reaction follows power law kinetics, (2.111) holds. As β̇ = 0

at equilibrium, we have

kf

kb
=

∏N
i=1 c

q′j
ie

∏N
i=1 cqi

ie

(2.119)

For the reaction (2.110), (2.119) reduces to

kf

kb
= c̃

q′
1
−q1

1e c̃
q′
2
−q2

2e c̃
q′
3
−q3

3e c̃
q′
4
−q4

4e c∆q
∗

(2.120)

where

∆q ≡
4

∑

i=1

(q′i − qi) (2.121)

Equation (2.120) may be compared with (2.116), which can be rewrit-

ten as

Kc = c̃m3

3e c̃m4

4e c̃−m1

1e c̃−m2

2e (2.122)

As noted by Denbigh (1971, pp. 444-445), both kf/kb and Kc are functions of

the temperature T . Hence the right hand side of (2.120) must be a function

of the right hand side of (2.122), i.e.

c̃
q′
1
−q1

1e c̃
q′
2
−q2

2e c̃
q′
3
−q3

3e c̃
q′
4
−q4

4e c∆q
∗

= f(c̃m3

3e c̃m4

4e c̃−m1

1e c̃−m2

2e ) (2.123)

For a batch reactor, the equilibrium concentrations {cie} can be var-

ied by varying the initial composition of the reaction mixture. Hence (2.123)

must hold for arbitrary values of the {cie}. It can be shown that (2.123)

can be satisfied by requiring that f(x) = xn, where n is a positive constant

(Blum and Luus, 1964). Hence

q′3 − q3

m3
=

q′4 − q4

m4
=

q′1 − q1

−m1
=

q′2 − q2

−m2
= n (2.124)

If (2.124) holds, (2.116) and (2.120) imply that

kf

kb
= Kn

c c∆q
∗

(2.125)

For a perfect gas mixture involving a reaction following power law

kinetics, (2.124) ensures that the rate expression is thermodynamically con-

sistent. For example, consider the production of phosgene (COCl2) by the

reaction

CO(g) + Cl2 (g) 
 COCl2 (g) (2.126)
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The reaction rate is given by (Denbigh and Turner, 1972, p. 21)

β̇ = kf cC0
c
3/2
Cl2

− kb cCOCl2 c
1/2
Cl2

(2.127)

Equation (2.127) implies that

kf

kb
=

cCOCl2 c
1/2
Cl2

cC0
c
3/2
Cl2

=
c̃COCl2

c̃C0
c̃Cl2

c−1
∗

= Kc c−1
∗

(2.128)

Hence (2.127) is thermodynamically consistent.

2.18 Theories for the rates of elementary reactions

The temperature dependence of the rate constant k is usually fitted by the

Arrhenius equation (Arrhenius, 1899) (cited in Laidler, 2007, p. 42)

k = Ae−
E

R T (2.129)

where the pre-exponential factor A and the activation energy E are treated

as constants and T is the absolute temperature. van’t Hoff (1884) (cited in

Laidler, 2007, p. 42) had proposed this equation earlier. He also considered

a more general case where E = B + D T 2, and B and D are constants.

Kooij (1893) and Harcourt and Esson (1895) (cited in Laidler, 2007, p. 42)

suggested equations of the forms

k = AT m e−
E

R T (2.130)

k = AT m (2.131)

respectively. As noted by Laidler (2007, p. 46), current practice is to use

the Arrhenius equation where it is applicable. If a plot of ln k versus 1/T

shows a significant curvature, (2.130) is the preferred choice. Transition

state theory provides some justification for the use of this equation. On the

other hand, there is no theoretical basis for the use of (2.131), even in cases

where it fits the data well.

Theories for estimating the pre-exponential factor are discussed briefly

below.



Review of background material 35

2.18.1 The collision theory

This theory was proposed by Trautz (1916) and Lewis (1918) for gas phase

reactions. It is based on the kinetic theory of dilute gases. Consider an

elementary reaction of the form

A1 + A2 → products (2.132)

The reaction rate, i.e the number of molecules of A1 consumed per unit

volume per unit time is assumed to be equal to the number of collisions per

unit volume per unit time between molecules of A1 and A2. The latter may

be estimated as follows.

Using the Maxwell-Boltzmann velocity distribution for each species,

the mean relative velocity between molecules of A1 and A2 is given by (Frost

and Pearson, 1961, p. 60)

u =

√

8 kb T

π µm
(2.133)

where

µm ≡ m1 m2

m1 + m2
(2.134)

is the reduced mass of two molecules of masses m1 and m2. As the molecules

are assumed to be rigid spheres of diameters d1 and d2, the centres of

molecules of A2 must lie in the volume π d2
12 u∆t if a molecule of A1 is

to collide with them in a time interval ∆t. Here

d12 ≡ d1 + d2

2
(2.135)

is the mean diameter for molecules of A1 and A2. If n2 is the number of

molecules of A2 per unit volume, the number of collisions per unit time

between a molecule of A1 and molecules of A2 is

Γ̂12 = π d2
12 u n2 (2.136)

As there are n1 molecules of A1 per unit volume, the number of collisions

per unit volume per unit time between molecules of A1 and A2 is given by

Γ̂ = π d2
12 u n2 n1 (2.137)

or, in terms of the molar concentrations ci by

Γ̂ = N2
a π d2

12 u c2 c1 (2.138)

where Na = 6.022 × 1023 molecules/mol is the Avogadro number.

Substituting for u from (2.133) and assuming that each collision
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results in a reaction, i.e. the conversion of one molecule of A1 and one

molecule of A2 to products, the molar reaction rate is given by

β̇ = Na

√

8π kb T

µm
d2
12 c2 c1 (2.139)

Consider gases at normal temperature and pressure (273 K, 1 atm), with

c1 = c2 = p/(R T ), where R is the gas constant. The reaction rate calculated

using (2.139) is of the order of 1010 mol/m3-s (Frost and Pearson, 1961,

p. 61), which is several orders of magnitude higher than the observed rate

for many reactions.

The discrepancy can be reduced significantly by assuming that only

“energetic” collisions result in a chemical reaction. An energetic collision is

one for which the kinetic energy associated with the relative velocity along

the line of centres exceeds a threshold value or activation energy E (Frost and

Pearson, 1961, p. 65). It can be shown (Frost and Pearson, 1961, pp. 65-67)

that the fraction of energetic collisions is exp(−E/(R T )), and hence (2.139)

may be replaced by

β̇ = Na

√

8π kb T

µm
d2
12 e−

E
R T c2 c1 (2.140)

Thus the rate constant for (2.132) is given by

k = Na

√

8π kb T

µm
d2
12 e−

E
R T (2.141)

Comparison with the Arrhenius equation (2.129) shows that the pre-exponential

factor is now a weak function of the temperature T .

For a reaction of the form

2A1 → products (2.142)

µ = m1/2 and the right hand side of (2.143) must be divided by a factor of

2 to avoid counting the collisions twice. Thus the rate constant for (2.142)

is given by

k = 2Na

√

π kb T

m1
d2
12 e−

E
R T (2.143)

For the reaction

2HI → H2 + I2 (2.144)

Lewis (1918) (cited in Laidler, 2007, p. 82) found that the pre-exponential
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factor predicted by (2.143) was 3.5 × 10−10 m3/mol-s. This value agrees

very well with the observed value, but the agreement is fortuitous. For many

reactions, the collision theory considerably overestimates the rate constants.

Extensions to the collision theory are described in Laidler (2007,

pp. 84-87).

2.18.2 Transition state theory or activated complex theory

This theory was developed by several workers, notably Pelzer and Wigner

(1932), Evans and Polanyi (1935), Eyring (1935), and Wynne-Jones and

Eyring (1935). Consider a reaction of the type

A + BC 
 AB + C (2.145)

where A, B, and C are atoms. For a system containing one atom each of A,

B, and C, the potential energy of interaction Up will vary with interatomic

distances, owing to the existence of attractive and repulsive forces. For ease

of analysis, consider a linear or one-dimensional configuration of the atoms

(Fig. 2.2). Then

Fig. 2.2. A linear configuration of three atoms A, B, and C

Up = Up(rAB, rBC) (2.146)

where rAB is the distance between the nuclei of atoms A and B.

Equation (2.146) may be regarded as a potential energy surface in a

space with Cartesian coordinates (Up, rAB, rBC). For H atoms, the potential
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energy surface has been calculated using quantum mechanics. The reaction

considered is

Hα + Hβ − Hγ → Hα − Hβ + Hγ (2.147)

where the superscripts indicate different H atoms. For a linear configuration

of atoms, contours of constant Up can be plotted in the r(Hα−Hβ)−r(Hβ −
Hγ) plane (Fig. 2.3).

The upper left hand corner of the figure represents a region where

r(Hα −Hβ) � r(Hβ −Hγ), and hence it corresponds to the reactants shown

in (2.147). Similarly the lower right hand corner corresponds to the products

shown in (2.147). The broken curve ABC is the locus of local minima of the

potential energy Up. It is postulated that the reaction occurs along this path

of minimum energy, in the direction shown by the arrows. An examination

of the numerical values of the contours intersecting this locus shows that Up

exhibits a maximum as the locus is traversed (Fig. 2.4). Thus the point B

in Fig. 2.3 represents a saddle point or col (Laidler, 2007, p. 59).

The distance measured along ABC is called the reaction coordinate

(Frost and Pearson, 1961, p. 81). The configuration of the atoms in the

vicinity of the maximum B in Fig. 2.4 is referred to as an activated complex

or a transition state (Laidler, 2007, pp. 60-61). Once the reaction coordinate

and the location of the activated complex have been identified, the rate of

the reaction can be calculated as discussed below. The treatment has been

adapted from Laidler (2007, pp. 95-97).

The procedure consists of estimating (i) the concentration of ac-

tivated complexes, and (ii) the time required for a complex to cross the

transition state from left to right. The ratio of these two factors gives the

reaction rate.

The reaction (2.145) is assumed to occur through an intermediate

step involving the activated complex X∗:

A + BC 
 X∗ → AB + C (2.148)

In order to derive the reaction rate for the forward reaction, the key as-

sumption is that X∗ is in equilibrium with the reactants A and BC. This

assumption is difficult to justify. For reactions whose activation energy is

� R T , where R is the gas constant and T is the absolute temperature, it ap-

pears that its use may not cause large errors, unless the reactions are highly

exothermic (Denbigh, 1971, p. 455). For a perfect gas mixture containing

three species A, BC, X∗, it can be shown using statistical mechanics that

the molar concentrations ci are related to the molecular partition functions
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Fig. 2.3. Contours of constant potential energy Up for a system containing three H

atoms Hα, Hβ , and Hγ . Here r(Hα−Hβ) denotes the distance between the centres of

Hα and Hβ . The contours are only rough sketches, used to indicate the qualitative
features. The actual contours, representing the results of Truhlar and Horowitz
(1978), are given in their paper and also in Laidler (2007, p. 67). The numbers
on the contours show values of Up in kcal/mol. Adapted from Fig. 3.10 of Laidler
(2007, p.67).

q̂i by (McQuarrie, 2003, pp. 142-144)

cX∗

cA cBC
=

Na(q̂X∗/V )

(q̂A/V ) (q̂BC/V )
e−E0/(R T ) (2.149)

where Na = 6.022 × 1023 molecules/mol is Avogadro’s number, V is the

volume of the system, and E0 is the difference in the molar zero point
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Fig. 2.4. Locus of local minima of the potential energy for the potential energy
contours shown in Fig. 2.3).

energies of the activated complex and the reactants. For the first of the

reactions (2.148)

E0 ≡ EX∗ − EA − EBC (2.150)

where EX∗ , EA and EBC are the zero point energies per mole of X∗, A, and

BC, respectively, relative to an arbitrary zero of energy.

For a one-dimensional vibration of a molecule, the partition function

is given by (McQuarrie, 2003, p. 96)

q̂ =
1

1 − e−hν/(kb T )
(2.151)
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where ν is the frequency of vibration, h = 6.626 × 10−34 J-s is Planck’s

constant, and kb = 1.38×10−23 J/K is Boltzmann’s constant. It is assumed

that the activated complex crosses the saddle point via a very loose vibration,

i.e. the frequency ν → 0 (Laidler, 2007, p. 95). In this limit, (2.151) reduces

to

q̂ =
kb T

h ν
(2.152)

Thus

q̂X∗ =
kb T

h ν
q̂′X∗

(2.153)

where q̂′X∗
represents the partition function for all the degrees of freedom of

the activated complex, except the loose vibration near the saddle point.

Equations (2.149) and (2.153) imply that

cX∗ =
Na kb T

h ν

(q̂′X∗
/V )

(q̂A/V ) (q̂BC/V )
e−E0/(R T ) cA cBC (2.154)

As the time required for the activated complex to cross the saddle region is

≈ 1/ν, the molar reaction rate for the forward reaction is given by

β̇ =
cX∗

1/ν
=

RT

h

(q̂′X∗
/V )

(q̂A/V ) (q̂BC/V )
e−E0/(R T ) cA cBC (2.155)

where R ≡ kb Na is the gas constant. Hence the rate constant for the forward

reaction is given by

k =
RT

h

(q̂′X∗
/V )

(q̂A/V ) (q̂BC/V )
e−E0/(R T ) (2.156)

Note that the pre-exponential factor is now a function of the temperature,

unlike in the Arrhenius equation.

2.18.3 Comparison of the theories

For the reaction

A + B → AB (2.157)

where A and B are atoms, both the theories give identical expressions for the

rate constant (Laidler, 2007, pp. 106-107). For reactions involving molecules,

the partition functions occurring the activated complex theory involve other

degrees of freedom such as rotation and vibration in addition to transla-

tion, whereas the collision theory considers only translation. As discussed

in Laidler (2007, pp. 107-109), these additional degrees of freedom cause the
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pre-exponential factor predicted the activated complex theory to be signifi-

cantly lower than than that predicted by the collision theory. Two examples

are given below.

Table 2.1 compares the measured and predicted pre-exponential fac-

tors for the dimerization of cyclopentadiene (Fig. 2.5)

2C5H6(cyclopentadiene) → C10H12 (2.158)

and

Fig. 2.5. Dimerization of cyclopentadiene.

2NO2 → 2NO + O2 (2.159)

In both the cases, the activated complex theory gives reasonable estimates

of the pre-exponential factors, whereas the collision theory overestimates

them considerably.

2.18.4 Reactions in solution

Some reactions occur in both the gas phase and also in a liquid solvent.

In such cases, the rate in solution is comparable to that in the gas phase

(Table 2.2), except for the dimerization reaction in C6H6. For reactions that
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Table 2.1. Measured and predicted values of the pre-exponential factor A

for the reactions (2.158) and (2.159). Source: Laidler (1965, pp. 124-125).

A (m3/mol-s)

reaction (2.158) (2.159)

experiment 104 2 × 106

collision theory 108 4 × 107

activated complex theory 2 × 104 2.5 × 106

occur in solution, but not in the gas phase, the solvent may significantly

affect the rate (Table 2.3).

2.18.5 Catalytic reactions

A catalyst is a substance that increases the reaction rate without being

permanently affected by the reaction. As it increases the rates of the forward

and backward reactions by the same amount, the equilibrium conversion is

unaffected.

As noted by Laidler (2007, p. 229), the word catalysis is derived

from the Greek words kata (wholly) and lyein (loosen). The word catalyst

was coined by Berzelius (1836), who studied several reactions, and is usually

credited with the discovery of catalysis. However, as noted by Laidler and

Cornish-Bowden (1979) (cited in Datta, 2005, p. 248-249), the phenomenon

of catalysis had been discovered forty years earlier by Elizabeth Fulhame.

Catalytic reactions may be broadly classified as homogeneous or het-

erogeneous. In the former, the reactants, products, and catalyst are all in

the same phase; in the latter, more than one phase is involved. Enzyme

catalysis is usually classified under homogeneous catalysis (Laidler, 2007,

p. 378).

An example of a homogeneously catalyzed gas phase reaction is pro-

vided by the decomposition of acetaldehyde in the presence of iodine (Lai-

dler, 2007, p. 414):

CH3CHO → CH4 + CO (2.160)

Here I2 acts as a catalyst, reducing the activation energy from about 200
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Table 2.2. Comparison of pre-exponential factors A and activation energies

E for reactions in the gas phase and in liquids. Source: Laidler (2007,

pp. 184-185).

solvent log10 A E
(A in m3/mol-s) (kJ/mol)

(i) decomposition of N2O5

gas phase 7.6 103.3

CCl4 7.6-7.8 101.3-106.7

CHCl3 7.6-7.7 102.5-102.9

(ii) dimerization of cyclopentadiene

gas phase 0.1 69.9

CCl4 -0.1 67.8

C6H6 1.1 29.7

CS2 -0.3 74.1

kJ/mol to about 135 kJ/mol. There are many aqueous phase reactions that

are catalyzed by acids and bases, such as the reaction between acetone and

iodine (Laidler, 2007, p. 392).

Many industrial reactions such as the synthesis of NH3 involve het-

erogeneous (solid) catalysts. Such reactions involve several steps, such as

the mass transfer between the bulk fluid and the surface of the catalyst,

adsorption of reactants on the surface, either surface reactions between ad-

sorbed reactants or reactions between adsorbed and fluid-phase reactants,

and desorption of reactants and products from the surface.

In the context of the transition state theory, the main effect of a solid

catalyst is to lower the energy barrier (Fig. 2.6). For example, the activation

energy for the decomposition of NH3 decreases from 340 kJ/mol to 134-180

kJ/mol when a molybdenum catalyst is used (Laidler, 2007, p. 267).

Consider the unimolecular reaction A1 (g) → A2 (g) which is cat-
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Table 2.3. Effect on the solvent on the rate of reaction between

triethylamine and ethyliodide. Here k is the second order rate constant,

evaluated as 100 ◦. Source: Laidler (2007, p. 185).

solvent 1011 k
(A in m3/mol-s)

hexane 0.5

toluene 25.3

benzene 39.8

alyzed by a solid catalyst. Suppose it is assumed that the surface reaction

is the rate-limiting step, i.e. of adsorption and desorption can occur at rates

that are potentially much faster than the rate of surface reaction. Hence

these processes may be assumed to be at equilibrium, and the concentrations

of the adsorbed species may be calculated using the adsorption isotherms.

The latter are obtained by equating the rates of adsorption and desorption

of each reactant, in the absence of reactions. The above model leads to the

rate expression (Schmidt, 2005, p. 303)

β̇ =
k K1 p1

1 + K1 p1 + K2 p2
(2.161)

where β̇ is the intrinsic reaction rate, k is the rate constant, Ki and pi are

the adsorption equilibrium constants and partial pressure, respectively, of

species Ai. Equation (2.163) assumes that A2 is first formed as an adsorbed

species that then desorbs, i.e. the reactions involved are

A1∗ → A2∗ → A2g (2.162)

where A1∗ represents adsorbed A1. If A2 (g) is formed directly from A1∗, we

set K2 = 0 in (2.163). Equation (2.163) represents an example of Lanmuir-

Hinshelwood, or equivalently, Hougen-Watson kinetics, named after Lang-

muir (1922), Hinshelwood (1926), and Hougen and Watson (1947) (cited in

Froment and Bischoff, 1990, p. 71). Instead of assuming that the surface

reaction is rate-limiting, alternative assumptions may be used, leading to

different rate expressions (Froment and Bischoff, 1990, pp. 76-77).
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Similarly, for the reaction A1 (g) + A2 (g) → A3 (g), the reaction

rate is given by (Schmidt, 2005, p. 308)

β̇ =
k K1 K2 p1 p2

(1 + K1 p1 + K2 p2 + K3 p3)2
(2.163)

As noted by Schmidt (2005, p. 309), the use of Langmuir-Hinshelwood kinet-

ics involves several assumptions that may not be justified in actual surface

catalyzed reactions. However, it provides relatively simple kinetic models

for complex heterogeneous catalytic reactions. Zhang et al. (2009) discuss

the use of such models for the Fischer-Tropsch synthesis of hydrocarbons

from water gas, which is a mixture of CO and H2.

2.18.6 Ideal reactors

As mentioned in Chapter 1, ideal reactors are based on simple models of

flow patterns and mixing in the reaction vessel.

(a) The ideal batch reactor

In an ideal batch reactor, the concentration and temperature fields

are assumed to be spatially uniform. In practice, the condition can be ap-

proximately realized by vigorous agitation or stirring. In the absence of

stirring, beautiful spatial patterns, caused by an interaction between dif-

fusion and reactions, may develop in some systems (Epstein et al., 1983;

Epstein and Showalter, 1996).

All the elements of the fluid spend the same amount of time in the

reactor, and hence have the same residence time. From the viewpoint of

thermodynamics, a batch reactor represents a closed system. The steady

states of the batch reactor correspond to states of reaction equilibria, which

satisfy (2.84).

Batch reactors are often used in the pharmaceutical industry, where

small volumes of high-value products are made.

(b) The ideal continuous stirred tank reactor (CSTR)

Like in an ideal batch reactor, the concentration and temperature

fields in an ideal CSTR are spatially uniform. As there are no spatial gra-

dients, the species concentrations in the exit stream are identical to the

corresponding values in the reactor. On the other hand, the species con-

centrations in the inlet stream are in general different from those in the

reactor.

Unlike the batch reactor, the CSTR is an open system as it can
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exchange heat and mass with the surroundings. Hence it operates away from

equilibrium, and steady states are usually not states of reaction equilibria.

On account of the assumption of perfect mixing, the sequence in

which fluid elements leave the reactor is uncorrelated with the sequence in

which they enter. As shown later, this leads to a distribution of residence

times for the fluid leaving the reactor.

These reactors are widely used for polymerization reactions such as

the polymerization of styrene, production of explosives, synthetic rubber,

etc. Compared to tubular reactors, CSTRs are easier to clean and permit

better control of the temperature.

(c) The plug flow reactor (PFR)

The PFR is an idealization of a tubular reactor. The velocity, tem-

perature, and concentration fields are assumed to be uniform across the

cross section of the reactor. In practice, this situation can be approximately

realized for the case of turbulent flow through a tube with a large ratio of

the length to the diameter. The latter condition ensures that axial mixing

has a negligible effect on the conversion.

In a PFR, there is perfect mixing in the radial or transverse direction.

Further, there is no mixing or diffusion in the axial direction. Like a CSTR,

the PFR also represents an open system, and hence steady states are not

states of reaction equilibrium. Owing to the assumption of plug flow, all

the fluid elements have the same residence time. The velocity of the fluid is

often treated as a constant, but this assumption must be relaxed when the

density of the fluid changes significantly along the length of the tube.

The steady state equations for a PFR are similar in form to the

dynamic equations for an ideal batch reactor. In many cases, the results

for the latter can be translated into results for a PFR operating at a steady

state.

Tubular reactors are used for many gas phase and liquid phase reac-

tions, such as the oxidation of NO and the synthesis of NH3. These reactors

are often modelled as PFRs, but more detailed models involving complica-

tions such as radial gradients, may be required in some cases.
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Fig. 2.6. Variation of the potential energy Up along the reaction coordinate for an
uncatalyzed gas phase reaction (—) and a solid catalyzed heterogeneous reaction
(- - -). Here A, C, D, and G denote the gaseous reactants, gaseous products,
adsorbed reactants, and adsorbed products, respectively. and D and F denote the
activated complexes for the gas phase and heterogeneous reactions, respectively.
The quantities ∆Uph and ∆Upc represent the energy barriers for the homogeneous
and catalytic reactions, respectively. Adapted from Laidler (2007, p. 268).
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