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Arithmetic and Geometric Applications
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JAN DENEF

Abstract. We survey applications of quantifier elimination to number the-
ory and algebraic geometry, focusing on results of the last 15 years. We
start with the applications of p-adic quantifier elimination to p-adic inte-
gration and the rationality of several Poincar series related to congruences
f(x) = 0 modulo a prime power, where f is a polynomial in several vari-
ables. We emphasize the importance of p-adic cell decomposition, not only
to avoid resolution of singularities, but especially to obtain much stronger
arithmetical results. We survey the theory of p-adic subanalytic sets, which
is needed when f is a power series instead of a polynomial. Next we explain
the fundamental results of Lipshitz–Robinson and Gardener–Schoutens on
subanalytic sets over algebraically closed complete valued fields, and the
connection with rigid analytic geometry. Finally we discuss recent geo-
metric applications of quantifier elimination over C((t)), related to the arc
space of an algebraic variety.

One of the most striking applications of the model theory of valued fields to
arithmetic is the work of Ax and Kochen [1965a; 1965b; 1966; Kochen 1975],
and of Ershov [1965; 1966; 1967], which provided for example the first quantifier
elimination results for discrete valued fields [Ax and Kochen 1966], and the
decidability of the field Qp of p-adic numbers. As a corollary of their work,
Ax and Kochen [1965a] proved the following celebrated result: For each prime
number p, big enough with respect to d, any homogeneous polynomial of degree
d over Qp in d2 + 1 variables has a nontrivial zero in Qp. However in the present
survey we will not discuss this work, but focus on results of the last 15 years.

In Section 1 we explain the applications of p-adic quantifier elimination to
p-adic integration and the rationality of several Poincaré series related to a con-
gruence f(x) ≡ 0 mod pm, where f(x) is a polynomial in several variables with
integer coefficients. We emphasize the importance of p-adic cell decomposi-
tion, not only to avoid resolution of singularities, but especially to obtain much
stronger results (for example, on local singular series in several variables).
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To obtain results similar to those in Section 1, but when f is a power series
instead of a polynomial, one needs the theory of p-adic subanalytic sets which
we survey in Section 2.

In Section 3 we explain the fundamental results of Lipshitz–Robinson and
Gardener–Schoutens on subanalytic sets over algebraically closed nonarchime-
dean complete valued fields and the connection with rigid analytic geometry.
Finally, in Section 4 we discuss recent geometric applications of quantifier elim-
ination over the field C((t)) of Laurent series over C. Here p-adic integration is
replaced by “motivic integration”, a notion recently introduced by Kontsevich.

1. Integration on Semi-Algebraic Subsets over Qp

1.1. Motivating Problem. Let f(x) ∈ Z[x], x = (x1, . . . , xn). Let p be a
prime number and m ∈ N. Denote the ring of p-adic integers by Zp and the field
of p-adic numbers by Qp; see [Koblitz 1977], for example. For a ∈ Zp, we denote
the image of a in Z/pmZ by a mod pm. We use the notations

Nm := number of elements in {x ∈ (Z/pmZ)n | f(x) ≡ 0 ≡ pm},

Ñm := number of elements in {x ≡ pm | x ∈ Znp , f(x) = 0},

P (T ) :=
∑
m∈N

NmT
m, P̃ (T ) :=

∑
m∈N

ÑmT
m.

Borevich and Shafarevich conjectured that P (T ) is a rational function of T .
This was proved by Igusa [1974; 1975; 1978] using Hironaka’s resolution of sin-
gularities. Serre [1981, § 3] and Oesterlé [1982] investigated the behaviour of Ñm
for m→∞, and they asked the question whether P̃ (T ) is a rational function of
T . This was proved by Denef [1984] using resolution of singularities and Macin-
tyre’s Theorem [Macintyre 1976] on quantifier elimination for Qp. Denef [1984]
also gave an alternative proof of the rationality of P (T ) and P̃ (T ), avoiding the
use of resolution of singularities, using instead Macintyre’s Theorem and a cell
decomposition theorem. We will briefly explain these proofs below.

1.2.1. The p-adic measure. There exists a unique (R-valued Borel) measure
on Qnp which is invariant under translation such that Znp has measure 1. We
denote this Haar measure by |dx| = |dx1| · · · |dxn|. The measure of a + pmZnp
equals p−mn, for each a ∈ Qnp , because these sets have the same measure (being
translates of pmZnp ) and pnm of them form a partition of Znp . For any measurable
A ⊂ Qnp and λ ∈ Qp, the measure of λA = {λa | a ∈ A} equals the measure
of A times |λ|n, where |λ| denotes the p-adic absolute value |λ| := p− ordλ, with
ord : Qp → Z∪{+∞} the p-adic valuation. We recall that each λ in Qp\{0} can
be written as λ = upordλ with u a unit in the ring Zp. Integration of (integrable)
real valued functions on Qnp is defined in the standard way. As an example we
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calculate the following integral for n = 1:∫
x∈Zp, ord x≥m

|x|s |dx| =
∑
j≥m

p−sj
∫

ord x=j

|dx| =
∑
j≥m

p−sj(p−j − p−j−1)

= (1− p−1)p−(s+1)m/(1− p−s−1),

for any nonnegative s ∈ R.

1.2.2. Rationality of P (T ) and P̃ (T ). The proof of the rationality of P (T ) and
P̃ (T ) is based on the simple formulas

Nm = pmn measure ({x ∈ Znp | ord f(x) ≥ m}),

Ñm = pmn measure ({x ∈ Znp | ∃y ∈ Z
n
p : f(y) = 0, y ≡ x ≡ pm}),

which are justified by observing that the set in the right-hand side is a union of
respectively Nm and Ñm residue classes mod pm, each having measure p−nm.

The set in the first formula is of a very simple type, but the set in the second
is more complicated, involving an existential quantifier. We need Macintyre’s
Theorem (see Section 1.3 below) on elimination of quantifiers to see that this set
is not too complicated, so that its measure (as a function of m) can be controlled.
To prove the rationality of P (T ) and P̃ (T ) one has to know how the measures of
the above sets vary with m. This is provided by the Basic Theorem 1.5 below.

1.3. Definable Subsets of Qp. Let LPres be the (first order) language (in
the sense of logic) whose variables run over Z and with symbols to denote +,≤
, 0, 1 and with for each d = 2, 3, 4, . . . a symbol to denote the binary relation
x ≡ y ≡ d. Note that in LPres there is no symbol for multiplication. As for
any (first order) language, the formulas of LPres are built up in the obvious
way from the above specified symbols and variables, together with the logical
connectives ∧ (and), ∨ (or), ¬, the quantifiers ∃,∀, brackets, and =. A well-
known result of Presburger [1930] states that Z has elimination of quantifiers in
the language LPres, meaning that each formula in that language is equivalent (in
Z) to a formula without quantifiers. (For readers who are not familiar with this
terminology from logic, we refer to [Denef and van den Dries 1988, § 0], where
these notions are explained for non-logicians.)

Let LMac be the (first order) language whose variables run over Qp and with
symbols to denote +,− ,× , 0, 1 and with for each d = 2, 3, 4, . . . a symbol Pd to
denote the predicate “x is a d-th power in Qp”. Moreover for each element in
Zp there is a symbol to denote that element. Macintyre’s theorem [1976] states
that Qp has elimination of quantifiers in the language LMac, meaning that each
formula in that language is equivalent (in Qp) to a formula without quantifiers.

Let L be the (first order) language with two sorts of variables: A first sort of
variables running over Qp, and a second sort of variable running over Z. The
symbols of L consist of the symbols of LMac (for the first sort), the symbols
of LPres (for the second sort), and a symbol to denote the valuation function
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ord : Qp \ {0} → Z (from the first sort to the second sort). (We use the
convention that ord 0 = +∞, (+∞) + l = +∞ and +∞ ≡ l mod d, for all l
in Z ∪ {+∞}.) An easy adaptation of Macintyre’s proof yields that Qp has
elimination of quantifiers in the language L; see [Denef 1984, Remark 6.4].

A subset of Qnp is called semi-algebraic if it is definable by a quantifier-free
formula of LMac (that is, a formula without quantifiers). Every subset of Qnp
which is definable in L is semi-algebraic. This follows from quantifier elimination
for L and the fact that the relation “ordx ≤ ord y” can be expressed in terms of
the predicate P2; see [Denef 1984, Lemma 2.1].

1.4. The Cell Decomposition Theorem

Theorem [Denef 1984; 1986]. Let fi(x, t) ∈ Qp[x, t], where i = 1, . . . ,m, x =
(x1, . . . , xn−1), and t is one variable. Fix d ∈ N with d ≥ 2. Then there exists a
finite partition of Qnp into subsets (called cells) of the form

A =
{

(x, t) ∈ Qnp | x ∈ C and |a1(x)|�1 |t− c(x)|�2 |a2(x)|
}
,

where C is an L-definable subset of Qn−1
p , each of �1 and �2 denotes either ≤ ,

< , or no condition, and a1(x), a2(x), c(x) are L-definable functions from Q
n−1
p

to Qp, such that , for all (x, t) ∈ A,

fi(x, t) = ui(x, t)dhi(x)(t− c(x))νi , for i = 1, . . . ,m,

with ui(x, t) a unit in Zp for all (x, t) in A, hi(x) an L-definable function from
Q
n−1
p to Qp, and νi ∈ N.

We recall that a function is called L-definable if its graph is L-definable, meaning
that it can be expressed by a formula in the language L.

Remark. This was first proved in [Denef 1984] using Macintyre’s Theorem.
Conversely Macintyre’s Theorem follows easily from The Cell Decomposition
Theorem which can be proved directly using a method due to Cohen [1969]; see
[Denef 1986].

1.5. Basic Theorem on p-adic Integration

Theorem [Denef 1985]. Let (Aλ,l)λ∈Qkp,l∈Zr be an L-definable family of bounded
subsets of Qnp . Then

I(λ, l) := measure of Aλ,l :=
∫
Aλ,l

|dx|

is a Q-valued function of λ, l belonging to the Q-algebra generated by the func-
tions

θ(λ, l) and pθ(λ,l),

where θ is Z-valued L-definable.
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(Saying that (Aλ,l) is L-definable means that the relation x ∈ Aλ,l can be ex-
pressed by a formula in the language L where x, λ are variables running over Qp
and l are variables running over Z. Saying that θ is Z-valued L-definable means
that the relation z = θ(λ, l) can be expressed by a formula in L, where λ are
variables running over Qp and z, λ are variables running over Z.)

We call the elements of the algebra mentioned in the theorem L-simple p-
exponential functions, and if there are no variables λ involved we call them
LPres-simple p-exponential functions. The Basic Theorem and its proof also
hold for integrals of the form

∫
Aλ,l

p−α(x,λ,l) |dx|, with α a positive Z-valued
L-definable function.

Proof of the Basic Theorem. By quantifier elimination Aλ,l is given by a
quantifier-free formula Ψ of L. Let f1, f2, . . . , fm be the polynomials (in vari-
ables of the first sort) which appear in this formula Ψ. We now apply the Cell
Decomposition Theorem 1.4 to f1, . . . , fm. This enables us to separate off the
last variable and integrate first with respect to that variable. The Basic Theorem
is obtained by iterating this procedure. For the details we refer to [Denef 1985,
§ 3], where a similar result is proved. �

1.6. Meaning of the Basic Theorem with No λ. If in Theorem 1.5 there are
no variables λ, then the function I(l) is built from Presburger functions (that is,
LPres-definable functions from Z

r to Z) by multiplication, exponentiation, and
Q-linear combinations. Such functions I(l) are easy to understand because any
Presburger function is piecewise Q-linear, the pieces being Presburger subsets of
Z
r (that is, LPres-definable subsets). But Presburger subsets are finite unions of

convex polyhedrons intersected with residue classes. A completely elementary
argument now yields:

Theorem 1.6.1. Assume the notation of Theorem 1.5 with no λ involved . Let
T = (T1, . . . , Tr). Then ∑

l∈Nr
I(l)T l ∈ Q[[T1, . . . , Tr]]

is a rational function of T .

Actually this holds for any LPres-simple p-exponential function I(l).

Corollary 1.6.2. The series P (T ) and P̃ (T ) from Section 1.1 are rational .

Proof. Direct consequence of 1.6.1 and 1.2.2. �

Corollary 1.6.3. Assume the notation of Section 1.1 and let Nm,r be the
number of solutions in Z/pmZ of f(x) ≡ 0 mod pm that can be lifted to a
solution of f(x) ≡ 0 mod pm+r in Z/pm+r

Z. Then
∑
m,r∈N Nm,rT

mUr is a
rational function of T,U .
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Proof. This is a direct consequence of 1.6.1 and the obvious fact that p−mnNm,r
equals the measure of the set

{x ∈ Znp | ∃y ∈ Z
n
p : f(y) ≡ 0 mod pm+r, y ≡ x mod pm}. �

The Basic Theorem 1.5 with no λ involved can also be proved without using the
Cell Decomposition Theorem, using instead resolution of singularities. Indeed,
by the p-adic Analytic Resolution Theorem of Section 1.7 below (applied to the
polynomials f1, . . . , fm appearing in a quantifier-free formula Ψ describing Al),
we can pull back the integral I(l) to the p-adic manifold M . The so obtained
integral on M can be easily evaluated by an elementary local calculation, using
[Denef 1985, Lemma 3.2]. A special case of such a calculation is given in the ex-
ample of Section 1.2.1. However when there are at least two variables λ involved
(meaning that k ≥ 2) then I do not know how to prove the Basic Theorem 1.5
without using the Cell Decomposition Theorem (even when r = 0).

1.7. Resolution of Singularities (p-adic Analytic Case). Let U ⊂ Qnp be
open and f : U → Qp a map. We call f analytic if each a ∈ U has an open
neighbourhood Va on which f can be written as a power series in x − a, with
coefficients in Qp, which converges for all x ∈ Va.

By a p-adic manifold we mean a p-adic analytic manifold (defined in the same
way as a complex analytic manifold) which is Hausdorff and everywhere of the
same dimension (see [Bourbaki 1967], for example). Analytic functions from
a p-adic manifold M1 to a p-adic manifold M2 are defined in the obvious way
by working locally. Also the notion of isomorphic p-adic manifolds is defined
straightforwardly.

It is easy to verify that each compact p-adic manifold of dimension n is a
disjoint union of a finite number of open compact submanifolds which are iso-
morphic to Znp .

Let M be a compact p-adic manifold and C a closed submanifold of codi-
mension r at least 2. We refer to [Denef and van den Dries 1988, § 2.1] for the
definition of the blowing-up of M with respect to C. This is an analytic map
h : M̃ → M , with M̃ a compact p-adic manifold of the same dimension as M ,
such that the restriction M̃ \h−1(C)→M \C of h is an isomorphism, and which
is constructed in a special way (well-known to geometers). In particular, using
suitable local coordinates, the map h is locally given by

(x1, . . . , xn) 7→ (x1xr, x2xr, . . . , xr−1xr, xr, . . . , xn).

(In these local coordinates, the submanifold C is locally given by x1 = x2 =
· · · = xr = 0.)

p-adic Analytic Resolution Theorem. Let f1, . . . , fm : Znp → Qp be ana-
lytic functions. Then there exists a compact p-adic manifold M of dimension n

and an analytic map π : M → Z
n
p such that



APPLICATIONS OF QUANTIFIER ELIMINATION FOR VALUED FIELDS 179

(i) M is the disjoint union of a finite number of clopens Ui = Z
n
p , such that on

each Ui, the jacobian of π and all fj ◦ π are monomials times analytic functions
with constant absolute value.
(ii) π is a composition of finitely many blowing-up maps with respect to closed
submanifolds of codimension ≥ 2. In particular π is an isomorphism outside
closed sets of measure zero.

This is an easy consequence of Hironaka’s embedded resolution of singularities
[Hironaka 1964]; see, for example, [Denef and van den Dries 1988, Theorem 2.2].

1.8. Meaning of the Basic Theorem with No l. If in Theorem 1.5 there
are no variables l, then the function I(λ) is built from L-definable functions
Q
k
p → Z, by multiplication, exponentiation and Q-linear combinations. Such

functions I(λ) are easy to understand. Indeed, by [Denef 1984, Theorem 6.3],
for any L-definable function θ : Qkp → Z there exists a finite partition of Qkp in
semi-algebraic subsets S such that on each such S the function θ is a Q-linear
combination of the ord of polynomials over Qp with no zeros on S. Applying the
Analytic Resolution Theorem (Section 1.7) to the polynomials appearing in the
linear combinations and formulas for S above mentioned, and expressing any
locally constant function on Z×p as a C-linear combination of characters (i.e.,
homomorphisms χ : Z×p → C

× with finite image, where Z×p and C× are the
groups of units in the rings Zp and C), we obtain:

Theorem 1.8.1. Let I : Zkp → Q be an L-simple p-exponential function (e.g .,
the function I (restricted to Zkp) in the Basic Theorem 1.5, when there is no l

involved). Then there exists a p-adic manifold M of dimension k and an analytic
map π : M → Z

k
p, which is the composition of finitely many blowing-up maps

with respect to closed submanifolds of codimension ≥ 2, such that locally at each
b ∈ M there exist local coordinates y1, . . . , yk centered at b such that I ◦ π is a
finite C-linear combination of functions of the form

k∏
i=1

χi(ac(yi))(ord yi)ni |yi|γi , (∗)

where the χi are characters on Z
×
p , ac(yi) := yip

− ord yi denotes the angular
component of yi ∈ Qp, the ni are in N, and the γi are in C. (Here we use the
following conventions: χ(ac(0)) = 0 if χ is a nontrivial character, χ(ac(0)) = 1
if χ is the trivial character 1; and (ord 0)ni |0|γi = 0, unless ni = γi = 0 in which
case it equals 1.)

Remark. Working with complex exponents in (∗) we are able to express, for
example, the function g : Zp \ {0} → Q with g(x) = 1 if (ordx) ≡ 0 ≡ d and
g(x) = 0 otherwise.

Application to the Local Singular Series in Several Variables. Let

f = (f1, . . . , fk) ∈ (Zp[x])k,
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with x = (x1, . . . , xn). Let a = (a1, . . . , ak) ∈ Zkp be a regular value of f : Znp →
Z
k
p, this means that a belongs to the image f(Znp ) but is not the image of any

point in Znp where the Jacobian of f has rank < k. Then it is known [Igusa 1978]
that

p−m(n−k)#{x ∈ (Z/pm)n | fi(x) ≡ ai mod pm for i = 1, . . . , k}

is constant for m big enough. (Here # stands for the number of elements.) We
denote this constant value by F (a). The function λ 7→ F (λ), for λ a regular value
of f , is called the local singular series of f : Znp → Z

k
p and plays an important

role in number theory (for example, for the circle method). We put F (λ) = 0 if λ
is not a regular value; thus F is a Q-valued function on Zkp. It is easy to see that
F (λ) is a locally constant function in the neighbourhood of any regular value a
of f . But if λ tends to a nonregular value c, then F (λ) has a nontrivial singular
behavior. For k = 1, this has been studied in depth by Igusa [1974; 1975; 1978],
who obtained an asymptotic expansion of F (λ) for λ → c. His work is based
on Mellin inversion over p-adic fields and the study of local zeta functions using
resolution of singularities. Igusa [1978, p. 32] asked how one could extend his
result to the general case k > 1. A contribution to Igusa’s question is given by

Corollary 1.8.2. The local singular series F (λ) is an L-simple p-exponential
function of λ = (λ1, . . . , λk) ∈ Zkp. Hence Theorem 1.8.1 applies to I(λ) := F (λ).

Proof. This follows from Theorem 1.5 and the simple fact that

F (λ) =
∫
x∈Znp , f(x)=λ

|dx/(df1 ∧ · · · ∧ dfk)|,

whenever λ is a regular value of f . �

Some first results on local singular series in several variables were obtained by
Loeser [1989], who conjectured that Theorem 1.8.1 holds for I(λ) := F (λ) with
π being an isomorphism above the set of regular values, when f = (f1, . . . , fk)
satisfies some nice geometric conditions (for example when the fibers of f : Q̄np →
Q̄
k
p are (n−k)-dimensional complete intersections with only isolated singularities,

where Q̄p denotes the algebraic closure of Qp). Loeser’s conjecture has several
important implications and is still wide open. Indeed Corollary 1.8.2 does not
yield any information about where π is locally an isomorphism. Very recently
Lichtin [≥ 2001a; ≥ 2001b] obtained explicit results assuming k = 2 together
with some other hypothesises. It was only after seeing Lichtin’s results that
I obtained Theorem 1.8.1 and Corollary 1.8.2. I do not know how to prove
Corollary 1.8.2 (for k ≥ 2) without using the Cell Decomposition Theorem. The
problem of relating the γi in Theorem 1.8.1 to geometric invariants remains
open, although Lichtin [≥ 2001a; ≥ 2001b] achieved a first breakthrough. Much
remains to be done. Moreover Lichtin’s method also has important applications
in analysis and geometry.
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Applications to Ax–Kochen-Definable Subsets. Let A be an L-definable subset
of Qnp , then

P̃A(T ) :=
∑
m∈N

(#{x mod pm | x ∈ A})Tm

is a rational function of T , the proof being the same as for P̃ (T ). This can
be proved without the Cell Decomposition Theorem (using instead resolution
of singularities and quantifier elimination; compare Section 1.6). By contrast,
it was proved in [Denef 1985] that, if we take for A a subset definable in the
language of Ax and Kochen [1966], then P̃A(T ) is still rational, but in this case
the Cell Decomposition Theorem seems to be essential. (The language of Ax and
Kochen is equivalent to the language obtained from L by adjoining a symbol for
the function Z → Qp : m 7→ pm from the second sort to the first sort.)

1.9. Dependence on p. It is well kown that Qp does not have a quantifier
elimination in LMac or L which holds for all p (or for almost all p). To have a
uniform quantifier elimination one has to work in a more complicated language
(and here it becomes tedious to avoid the logical terminology of languages.) For
such a quantifier elimination and its applications to integration we refer to [Pas
1989; 1990; 1991; Macintyre 1990].

1.10. Igusa’s Local Zeta Function. Let f(x) ∈ Z[x], x = (x1, . . . , xn).
Igusa’s local zeta function (for the trivial character) is the function

Z(s) :=
∫
Z
n
p

|f(x)|s |dx|,

for s ∈ C with Re(s) ≥ 0. It is an easy excercise to verify that P (p−n−s) =
(1 − p−sZ(s))/(1 − p−s). The rationality of P (T ) is equivalent to Z(s) being a
rational function of p−s. It was in this way that Igusa [1974; 1975; 1978] proved
that rationality of P (T ), by applying a resolution of singularities π : M → Z

n
p as

in Section 1.7, and pulling back the integral Z(s) through π, so obtaining a very
simple integral on M whose calculation is a straightforward exercise (compare
the example in Section 1.2.1). There are fascinating conjectures about Z(s),
such as the monodromy and holomorphy conjectures, which relate the poles of
Z(s) (and hence the poles of P (T )) to topological invariants of the singularities
of {x ∈ Cn | f(x) = 0}. For all these and the many geometric and arithmetic
results related to this we refer to the survey papers [Denef 1991; Igusa 1987;
1996; Veys 1996], and to the articles [Veys 1993; 1997].

1.11. Integration on Orbits. Let G be an algebraic group (defined over
Qp) acting (algebraically) on the affine n-space (over Qp). Let U ⊂ Qnp be a
G(Qp)-orbit (where G(Qp) denotes the group of Qp-rational points on G). Igusa
[1984] considered the orbital integral ZU (s) =

∫
U∩Znp

|f(x)|s |dx| which plays an
essential role in several investigations (for example, study of the Γ-matrix of a
prehomogeneous vectorspace [Sato 1989]). For this work it is essential to know
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that ZU (s) is a rational function of p−s. The rationality is proved by using
quantifier elimination: Indeed,

ZU (s) =
∑
m∈N

( ∫
U∩Znp

ord f(x)=m

|dx|
)

(p−s)m,

so that we can apply Theorem 1.6.1, since the orbit U is definable by an exis-
tential L-formula.

2. Integration on Subanalytic Sets over Qp

2.1. Motivating Problem. Let P (T ) and P̃ (T ) be as in Section 1.1, but
now with f(x) a power series over Zp which converges on Znp . Again we can
ask whether P (T ) and P̃ (T ) are rational. And indeed they are rational. For
P (T ) this can be proved by adapting Igusa’s method in a straightforward way;
compare Section 1.10. Concerning P̃ (T ), we have a problem in adapting the
proof in § 1: the set {x ∈ Znp | ∃y ∈ Z

n
p : f(y) = 0, y ≡ x ≡ pm} is in general

not L-definable when f is a power series. For this reason we have to introduce
analytic functions in our language.

2.2. The Languages Lan and LDan. We continue to use the language L

introduced in 1.3, but from now on the variables of the first sort will run over Zp
(instead of over Qp in § 1). Thus quantifiers with respect to variables of the first
sort will always run over Zp instead of over Qp. (Otherwise existential formulas
in Lan could define very pathological sets, if we also allowed symbols for analytic
functions in these variables.)

Let Lan be the (first order) language (in the sense of logic) obtained from L

by adding a symbol for each analytic function g : Znp → Zp.
Let LDan be the language obtained from Lan by adding a symbol D for the

function (truncated division)

D : Zp × Zp → Zp : (x, y) 7→
{
x/y if y 6= 0 and |x| ≤ |y|,
0 otherwise.

Let S be a subset of Znp . We call S semi-analytic in Znp , if S is definable by
a quantifier-free formula of Lan. We say that S is D-semi-analytic in Znp if it is
definable by a quantifier-free formula of LDan. Finally, we call S subanalytic in
Z
n
p if it is definable by an existential formula of Lan. (A formula is called exis-

tential if it is obtained from a quantifier-free formula by putting some existential
quantifiers in front of it.)

Let S be a subset of a p-adic manifold M , and a ∈M . We say that S is blue
in M at a, where “blue” is one of the three above properties, if a has an open
neighbourhood U ∼= Z

n
p in M such that S∩U is blue. We call S blue in M if S is

blue in M at each a ∈M . Note that the subanalytic subsets of M are precisely
the images of semi-analytic sets under proper analytic maps.
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2.3. The p-adic Analytic Elimination Theorem

Theorem [Denef and van den Dries 1988; Denef 1988]. Zp has elimination of
quantifiers in LDan.

Easy examples show that Zp has no quantifier elimination in Lan.

2.4. Corollary. (i) A subset of Znp is subanalytic in Znp if and only if it is
D-semi-analytic in Znp .
(ii) Each LDan-definable subset of Znp is subanalytic in Znp .
(iii) The complement and the closure of a subanalytic subset in a p-adic manifold
are again subanalytic.

2.5. About the Proof of Theorem 2.3. It suffices to prove that every
subanalytic subset of Znp is D-semi-analytic. Consider for example a subanalytic
set S ⊂ Znp of the form

S = {x = (x1, . . . , xn) ∈ Znp | ∃y = (y1, . . . , ym) ∈ Zmp : f(x, y) = 0},

with f =
∑
i∈Nm ai(x)yi a power series over Zp which converges on Zn+m

p , and
f 6≡ 0 mod p. If f where regular in ym (meaning that f ≡ p is a monic polynomial
in ym over Z/pZ[[x, y1, . . . , ym−1]]), then, by a well-known p-adic version of the
Weierstrass Preparation Theorem, we could write f = ug, with u having no
zeros in Zn+m

p and g a polynomial with respect to the last variable ym. (Both u
and g are power series over Zp which converge on Zn+m

p .) Hence we could apply
quantifier elimination in the language LMac to get rid of the quantifier ∃ym.
Although there exists an invertible change of the variables (x, y) which makes f
regular in ym, this is of no help because we are not allowed to mix the variables
x and y. However, dividing f by a coefficient aj(x) with maximal absolute value
(depending on x ∈ Znp , using case distinction), we can nevertheless apply the
Weierstrass Preparation Theorem after an invertible transformation of only the
y variables (which is certainly permitted). Divisions by aj(x) introduce the D-
functions. In order to apply the D-function only a finite number of times, one
has to express all the ai(x) as linear combinations of only finitely many of them,
which is possible by Noetherianness. See [Denef and van den Dries 1988] for the
details of the proof, which are somewhat lengthy. �

2.6. Basic Theorem on p-adic integration (analytic case)

Theorem. Theorem 1.5 with no λ involved (and hence also Theorem 1.6.1) still
holds if we replace Qp by Zp and “L-definable” by “Lan-definable.

An easy adaptation of the proof of this theorem shows that
∫
Al
p−θ(x,l) |dx| is an

LPres-simple p-exponential function, whenever Al ⊂ Znp and θ : Znp × Z
r → N

are Lan-definable. (Here l = (l1, . . . , lr) are Z-variables).

Corollary [Denef and van den Dries 1988]. P̃ (T ) is rational .
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Proof of Theorem 2.6. The next Theorem reduces it to Theorem 1.5, by
pulling back the integral through π. �

Remark. We expect that Theorem 2.6 remains true when there are variables λ
involved as in 1.5, but the above proof collapses in this case. Probably a proof
can be obtained using the Cell Decomposition Theorem 1.5 and the method in
Section 2.5 of [van den Dries 1992].

2.7. Uniformization Theorem for Subanalytic Sets

Theorem [Denef and van den Dries 1988]. Let A ⊂ Znp be subanalytic in Znp .
Then there exists a compact p-adic manifold M of dimension n and an analytic
map π : M → Z

n
p satisfying these conditions:

(i) π−1(A) is semi-analytic, and actually semi-algebraic on each Ui = Z
n
p in a

suitable decomposition of M as disjoint union of compact open subsets Ui.
(ii) π is a composition of finitely many blowing-up maps with respect to closed
submanifolds of codimension ≥ 2. In particular π is an isomorphism outside
closed sets of measure zero.

Moreover the same holds if A depends in an Lan-definable way on a parameter
l ∈ Zr (replacing “semi-analytic”, resp. “semi-algebraic”, by “definable by a
quantifier-free formula in Lan, resp. L, involving the parameter l). We can also
require that on each Ui the Jacobian of π equals a monomial times an analytic
function with constant absolute value.

The proof of Theorem 2.7 is based on the fact that A is D-semi-analytic and on
an induction on the number of occurences of D in the description of A, using
p-adic analytic resolution (Section 1.7).

2.8. Theorem [Denef and van den Dries 1988]. A subanalytic subset of Z2
p is

semi-analytic.

Proof. Follows from Theorem 2.7 taking advantage of the simple nature of
blowing-ups of Z2

p. �

2.9. Further Results. Using the above theorems one can prove (see [Denef
and van den Dries 1988]) that subanalytic sets have many good properties: fi-
nite stratification in subanalytic manifolds, good dimension theory,  Lojasiewicz
inequalities, rationality of  Lojasiewicz exponents, existence of a uniform bound
for the cardinality of the finite members of a subanalytic family of subanalytic
sets, semi-analytic nature of one-dimensional subanalytic sets, etc. Finally we
mention the result of Z. Robinson [1993] that the singular locus of a subanalytic
set is subanalytic.

To make the Analytic Elimination Theorem 2.3 uniform in p, one has to work
in a more complicated language; see [van den Dries 1992].
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2.10. Application to Counting Subgroups. For a group G and an integer
n ≥ 1, let an(G) be the number of subgroups of index n in G. For a finitely gen-
erated group or for compact p-adic analytic group this number an(G) is always
finite (see [Grunewald, Segal, and Smith 1988; du Sautoy 1993], for example).

Theorem 2.10.1 [Grunewald, Segal, and Smith 1988]. If G is a torsion-
free finitely generated nilpotent group, then

∑
m apm(G)Tm is rational , for each

prime number p.

Theorem 2.10.2 [du Sautoy 1993]. If G is a compact p-adic analytic group then∑
m apm(G)Tm is rational .

Theorem 2.10.1 is proved by expressing apm(G) in terms of a p-adic integral∫
Am

p−θ(x) |dx| with (Am)m∈N and θ definable in L. The proof of 2.10.2 is based
on the same idea, with Lan replacing L.

3. Subanalytic Sets over Cp and Rigid Analytic Geometry

3.1. Definition of Cp. Cp is the completion of the algebraic closure Q̄p of
Qp: The valuation ord on Qp extends to a valuation ord on Q̄p, taking values
in Q. This yields a norm | · | = p− ord(·) on Q̄p, and we can take the completion
Cp of Q̄p with respect to this norm. One verifies that Cp is a nonarchimedean
normed field and that Cp is algebraically closed. Most of what follows holds for
any algebraically closed nonarchimedean complete normed field, except possibly
Theorem 3.9 where we have to assume at this moment that the characteristic is
zero to apply resolution of singularities.

Notation. Put R = {x ∈ Cp | ordx ≥ 0}.

3.2. Motivating Problem. Let f : Rm → Rn be “analytic” (we will discuss
in 3.3 below what we mean by “analytic”). What can be said about the image
f(Rm) of f? Can one make f(Rm) semi-analytic by blowing-ups? The work of
Lipshitz, Robinson, Gardener and Schoutens yields analogiess over Cp for most
of the p-adic results in § 2, but the proofs are much more complicated.

3.3. First Motivation for Rigid Analysis. If in 3.2 we define “analytic”
in the local sense (namely, that each point a ∈ Rm has an open neighbourhood
Ua in Rm on which f can be written as a converging power series), then any
non-empty countable subset of Rn can be obtained as the image of a suitable
“analytic” map f : Rm → Rn. (The reason is that Rm is the disjoint union
of infinitely many clopen subsets.) With this definition of “analytic” we obtain
very “pathological” sets as images. To avoid this we will require that f is rigid
analytic.

A rigid analytic function h : Rm → Cp is a function which is given by a power
series over Cp which converges on Rm. We denote the ring consisting of these
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functions by

Cp〈X1, . . . , Xm〉 := {h : Rm → Cp | h is rigid analytic}.

This is called a Tate algebra, and is a Noetherian unique factorization domain
(see [Bosch et al. 1984], for example).

3.4. The Languages Lan and LDan. Let L be the (first order) language (in
the sense of logic) whose variables run over R, and with symbols to denote
+ ,− ,× , 0, 1 and the binary relation |x| ≤ |y|. It follows from a well-known
result of A. Robinson [1956] that R has quantifier elimination in the language L.
(In that paper Robinson only proves model completeness for the theory of alge-
braically closed valued fields. But since this theory satisfies the prime extension
property, its model completeness actually implies elimination of quantifiers; see
[van den Dries 1978], for example.)

Let Lan be the (first order) language obtained from L by adding a symbol for
each rigid analytic function f : Rm → R. Easy examples show that R has no
quantifier elimination in Lan.

Let LDan be the language obtained from Lan by adding a symbol D for the
function (truncated division)

D : R×R→ R : (x, y) 7→
{
x/y if y 6= 0 and |x| ≤ |y|,
0 otherwise.

Let A be a subset of Rn. We call A globally semi-analytic in Rn, resp. D-
semi-analytic in Rn, if A is definable by a quantifier-free formula of Lan, resp.
LDan. We call A (rigid) subanalytic in Rn, if it is definable by an existential
formula of Lan.

3.5. The Main Theorems

Theorem 3.5.1 (Model Completeness Theorem [Lipshitz and Robinson
1996a]). R is model complete in Lan, meaning that any formula in Lan is equiv-
alent (for R) to an existential formula in Lan.

Some of the ingredients in the proof of this theorem are discussed in Section 3.10
below.

Corollary 3.5.2. (i) Each Lan-definable subset of Rn is subanalytic in Rn.
(ii) The complement and the closure (with respect to the norm topology) of a
subanalytic subset of Rn are again subanalytic.

Theorem 3.5.3 (Rigid Analytic Elimination Theorem [Gardener and
Schoutens ≥ 2001]). R has quantifier elimination in LDan.

Some of the ideas in the proof of this theorem are discussed in Section 3.11 below.

Remarks 3.5.4. Theorem 3.5.1 is a direct consequence of Theorem 3.5.3, but
3.5.3 uses 3.5.1 in its proof. Lipshitz [1993] proved already much earlier that R
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has quantifier elimination in the language LDsep (see Section 3.10 below), which is
richer than LDan. This important result of Lipshitz is at the same time stronger
and weaker than Theorem 3.5.3.

Corollary 3.5.5. (i) A subset of Rn is subanalytic in Rn if and only if it is
D-semi-analytic in Rn.
(ii) The image of a rigid analytic map Rm → Rn is D-semi-analytic.

Remark 3.5.6. Using the theorems above one proves [Lipshitz 1993; Lipshitz
and Robinson 1996a; Lipshitz and Robinson 1999] that subanalytic sets in Rn

have many good properties. In particular all the results mentioned in Section
2.9 remain valid.

3.6. Further Motivation for Rigid Analysis. In the p-adic case any suban-
alytic subset of Z2

p is semi-analytic. It is not true that any subanalytic subset of
R2 is globally semi-analytic. The reason is that the definition of “global semi-
analytic” is too rigid. We need a more local definition. If we make the definition
completely local, then we lose information and projections of semi-analytic sets
would become pathological in some cases. Therefore we define a subset A of Rn

to be (rigid) semi-analytic if there exists a finite covering of Rn by admissible
open sets U in Rn, such that on each such U , A ∩ U is a finite boolean com-
bination of sets of the form {x ∈ Rn | |f(x)| ≤ |g(x)|} with f, g rigid analytic
on U . We still have to define the notions “admissible open in Rn” and “rigid
analytic function on an admissible open”. We give these definitions in Section
3.7 below. They are the key notions of rigid analysis and rigid analytic geometry.
With these definitions, subanalytic subsets of R2 are indeed semi-analytic; see
Theorem 3.8.

3.7. First Steps in Rigid Analysis. A (reduced) affinoid variety V is a
subset of some Rn of the form

V = {x ∈ Rn | f1(x) = · · · = fr(x) = 0},

where the fi are rigid analytic functions on Rn. The elements of V are in
one-one correspondence with the maximal ideals of the affinoid algebra A :=
Cp〈X1, . . . , Xn〉/(f1, . . . , fr).

A rigid analytic function on V is the restriction to V of a rigid analytic
function on Rn. A morphism f : W → V of affinoid varieties is a map f =
(f1, . . . , fn) with each fi rigid analytic.

A rational subdomain U of an affinoid variety V is a subset of V of the form

U = {x ∈ V | | pi(x)| ≤ |p0(x)|, for i = 1, · · · , s}, (∗)

where p0, p1, . . . , ps are rigid analytic functions on V with no common zero in V .
Note that U is open and closed in V . Moreover U is actually an affinoid variety,
its points being in 1-1 correspondence with {(x, t1, · · · , ts) | x ∈ V, pi−p0ti = 0}.
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Note that a “closed” disc {x ∈ V | |x − a| ≤ |r|}, and the complement {x ∈
V | |x − a| ≥ |r|} of an “open” disc, with a, r ∈ Cp, are rational subdomains
of V . Moreover the intersection of two rational subdomains is again a rational
subdomain.

A rigid analytic function on the rational subdomain U of V is a function of
the form

f (x, p1/p0, . . . , ps/p0) ,

with f(x, t1, . . . , ts) ∈ Cp〈x, t1, . . . , ts〉 and p0, p1, . . . , ps as in (∗).
An admissible open of an affinoid variety V is a rational subdomain of V ,

and an admissible covering of an admissible open U is a finite covering of U
consisting of rational subdomains of V .

Theorem (Tate). Let U1, U2, . . . , Uk be an admissible cover of an affinoid
variety V . Let f : V → Cp be a function whose restriction to each Ui is rigid
analytic. Then f is rigid analytic.

A quasi-compact rigid analytic variety is obtained by “gluing together” a finite
number of affinoid varieties (see [Bosch et al. 1984] for the details).

The preceding notions are the cornerstones of rigid analysis and rigid analytic
geometry, founded by J. Tate. Basic references are [Bosch et al. 1984; Fresnel
and van der Put 1981].

The definition of semi-analytic subsets of Rn given in Section 3.6 (based on
the notion of admissible open given above) extend in the obvious way to the
notion of semi-analytic subsets of an affinoid variety V .

3.8. Theorem [Gardener and Schoutens ≥ 2001]. Let A ⊂ R2 be subanalytic
in R2. Then A is semi-analytic.

The proof is based on the following theorem of Gardener and Schoutens [≥
2001], and on the simple nature of blowing-ups of R2.

3.9. Uniformization Theorem for Rigid Subanalytic Sets

Theorem. Let A ⊂ Rn be subanalytic in Rn. Then there exist a finite number
of morphisms fi : Vi → Rn with the following properties:

(i) Vi is an affinoid variety and fi is a composition of smooth local blowing-up
maps. (By a smooth local blowing-up map we mean the restriction to an open
affinoid subvariety of a blowing-up map (in the sense of rigid analytic geometry)
with respect to a smooth center of codimension at least 2.)
(ii)

⋃
i fi(Vi) = Rn.

(iii) f−1
i (A) is semi-analytic in Vi.

The proof (see [Gardener and Schoutens ≥ 2001]) is not difficult, since we know
already by Corollary 3.5.5 that A is D-semi-analytic, and by resolution of sin-
gularities it can be proved that D-semi-analytic sets can be made semi-analytic
by smooth local blowing-ups (compare the proof of Theorem 2.7).
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3.10. Ideas in the Proof of the Model Completeness Theorem 3.5.1

3.10.1. The Languages Lsep and LDsep. Let Lsep be the (first order) language
obtained from L by introducing a second sort of variables running over P := {x ∈
R | |x| < 1} and by adding a symbol for each function f : Rn × Pm → R with
f ∈ Cp〈X1, . . . , Xn〉[[Y1, . . . , Ym]]s. Here Cp〈X〉[[Y ]]s is the ring of separated
power series, which is a Noetherian subring of R < X > [[Y ]] ⊗R Cp, where
R〈X〉 denotes the ring of power series over R which converge on Rn. We refer
to [Lipshitz 1993; Lipshitz and Robinson ≥ 2001] for the exact definition. The
restriction to separated power series is essential to avoid pathologies. At any rate
we have Zp〈X〉[[Y ]] ⊂ Cp〈X〉[[Y ]]s. A nonzero separated power series f(Y1) in
one variable has only a finite number of zeroes in R. (This can fail when f(Y1)
is not separated.) A systematic study of the rings of separated power series has
been made by Lipshitz and Robinson in their fundamental paper [Lipshitz and
Robinson ≥ 2001].

Let LDsep be the (first order) language obtained from Lsep by adding a symbol
for the function D defined in 3.4, and a symbol for the function

D0 : R×R→ P : (x, y) 7→
{
x/y if y 6= 0 and |x| ≤ |y|,
0 otherwise.

3.10.2. Theorem [Lipshitz 1993]. R has elimination of quantifiers in LDsep.

The proof uses ideas from the proof of the p-adic Analytic Elimination Theorem
2.3, but is much more complicated. Variants of the Weierstrass Preparation
Theorem play an important role.

3.10.3. The language LDE . Let LDE be the sublanguage of LDsep having a symbol
for f : Rn × Pm → R only if f and all its partial derivatives are definable by
existential formulas of Lan. The set of these functions is denoted by E. To be
fully correct one should include more local functions as well, which only converge
on U × Pm, with U a rational subdomain of Rn. (When Cp is replaced by an
algebraically closed nonarchimedean normed field of nonzero characteristic one
has to modify the definition of LDE slightly.)

3.10.4. Theorem [Lipshitz and Robinson ≥ 2001; 1996a]. R has quantifier
elimination in LDE .

The proof is based on the verification that in the proof of the quantifier elimi-
nation for LDsep one only needs functions in E. For this, one has (among other
things) to prove a Weierstrass Preparation Theorem for E.

3.10.5. Note now that the Model Completeness Theorem 3.5.1 is a direct
consequence of the above Theorem 3.10.4.

3.11. Some ideas in the proof of the Rigid Analytic Elimination The-
orem 3.5.3. We have to prove that any subanalytic subset A of Rn is D-
semi-analytic. By Corollary 3.5.2 of the Model Completeness Theorem, we may
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suppose that A is closed in Rn. Indeed the closure Ā of A and Ā \A are suban-
alytic and dim(Ā \ A) < dimA (see [Lipshitz and Robinson 1996a]), so that we
can use induction.

An easy argument shows that a closed subanalytic subset of Rn is “almost”
the image f(X) of a morphism f : X → Rn with X an affinoid variety.

Recall that a morphism f : X → Y is called flat if, for each point x in X, the
local ring of X at x is flat over the local ring of Y at f(x). When f : X → Y is a
flat morphism of affinoid varieties, a theorem of Raynaud and Mehlmann states
that f(X) is a finite union of rational subdomains of Y , hence D-semi-analytic.

When f is not flat, Gardener and Schoutens [≥ 2001] proved using results from
[Gardener 2000; Schoutens 1999] that one can make f flat by taking its strict
transform under a suitable finite sequence of local blowing-ups. This Flattening
Theorem is an analogy of a difficult result of Hironaka in real analytic geometry.
The adaptation to the rigid analytic case is difficult and is based on Berkovich’s
approach [1990] to rigid analytic geometry. Since the image of a D-semi-analytic
set under a local blowing-up map is D-semi-analytic (up to a subanalytic subset
in an affinoid variety of smaller dimension), the Flattening Theorem (and some
extra work) reduces us to the case that f itself is flat, which we considered
already.

4. Semi-algebraic Sets over C((t)) and Motivic Integration

4.1. Motivating Problem. Let f(x) ∈ C[x], with x = (x1, . . . , xn). We use
the notations

X := {x ∈ Cn | f(x) = 0}, the hypersurface defined by f,

A := A(X) := {γ ∈ (C[[t]])n | f(γ) = 0} = the arc space of X,

Am := Am(X) := {γ ∈ (C[t]/tm)n | f(γ) ≡ 0〉(tm)},
πm : A→ Am the natural projection,

Ãm := Ãm(X) := πm(A) = the set of truncations mod tm of arcs on X.

Note that Am is an algebraic variety over C in a natural way. Indeed, we identify
it with

{(a1,0, a1,1, . . . , a1,m−1, a2,0, . . . , an,m−1) ∈ Cnm |
f(a1,0 + a1,1t+ · · · , . . . , an,0 + an,1t+ · · ·) ≡ 0〉(tm)}.

Proposition 4.1.1 [Nash 1995]. Ãm is a constructible subset of the algebraic
variety Am, meaning that it is a finite union of (Zariski) locally closed subvari-
eties of Am.

Proof. By a theorem of Greenberg [Greenberg 1966], for each m there exists
m′ ≥ m such that Ãm equals the image of Am′ , under the natural map Am′ →
Am. The Proposition follows now from quantifier elimination for C (Chevalley’s
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Theorem asserting that the image of a constructible subset under a morphism
of algebraic varieties is again constructible). �

Remark. The notions above can be defined for any algebraic variety over C,
and all results of the present § 4 hold in this more general case.

Remark. The Ãm were first studied by J. Nash [1995], in relation with Hi-
ronaka’s resolution of singularities. In the same paper, Nash formulated a very
intriging conjecture about the Ãm, which is still open. For related work see
[Gonzalez-Sprinberg and Lejeune Jalabert 1996; Lejeune-Jalabert 1990].

Formulation of the Problem. How does Ãm vary with m? We will give an
answer (Theorem 4.3) to this problem, modulo the equivalence relation which
calls two algebraic varieties equivalent if they can be cut in a finite number of
(Zariski locally closed) pieces, the pieces of the first variety being isomorphic (as
algebraic varieties) with the pieces of the second, or if this can be done after
replacing the two varieties by the disjoint union with a third variety. The set of
all varieties modulo this equivalence relation generates a ring:

4.2. The Grothendieck Ring M of Algebraic Varieties over C. This
ring M is generated by symbols [V ], for V running over all algebraic varieties C
(reduced and separated schemes of finite type over C), with relations

[V ] = [V ′] if V is isomorphic with V ′ ,

[V ] = [V \ V ′] + [V ′] if V ′ is Zariski closed in V ,

[V × V ′] = [V ][V ′].

Note that for V any algebraic variety over C, the map V ′ 7→ [V ′], for V ′ Zariski
locally closed in V , extends uniquely to the map W 7→ [W ], for W any con-
structible subset of V , satisfying [W ∪W ′] = [W ] + [W ′]− [W ∩W ′].

Set L := [A1] ∈M, where A1 denotes the affine line over C.
Set Mloc := M [L−1], the localization of the ring M obtained by inverting L.

4.3. Rationality Theorem

Theorem [Denef and Loeser 1999a]. P̃ (T ) :=
∑∞
m=1[Ãm]Tm, considered as

a power series over Mloc, is rational and belongs to the subring of Mloc[[T ]]
generated by Mloc[T ] and the series (1− LaT b)−1 with a ∈ Z and b ∈ N \ {0}.

4.4. Analogy with the p-adic Case. Note the analogy with the series
P̃ (T ) in Section 1.1, considering Zp as an analogue of C[[t]]. The proof of the
rationality Theorem 4.3 runs along the same lines as in Section 1 and is based
on the quantifier elimination for C((t)) due to Pas and integration on the arc
space (C[[t]])n of the affine n-space An. Integration on (C[[t]])n is called motivic
integration and was recently introduced by Kontsevich [1995] and refined by
Denef and Loeser [1999a]. We briefly discuss motivic integration in Section 4.7
and in 4.8 we present some ideas of the proof of Theorem 4.3. These integrals
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take values in a certain completion M̂ of M, unlike the p-adic integrals of Section
1 which take values in R.

4.5. The Completion M̂ of Mloc. Define Fm(Mloc) as the subgroup of Mloc

generated by

{[V ]L−i | V is algebraic variety and i ≥ m+ dimV }.

These form a filtration of Mloc. Let M̂ be the completion of Mloc with respect
to this filtration. (An element of Mloc is “small” if it belongs to Fm(Mloc) for
m big.) In comparison with p-adic integration, consider M̂ as the analogue of R
(the target of integration), and L as the analogue of p ∈ R. The ring structure
on Mloc induces a ring structure on M̂. The ring M̂ was first introduced by
Kontsevich [Kontsevich 1995].

Remark. We do not know whether the natural map Mloc → M̂ is injective. But
many geometric invariants, such as the topological Euler characteristic factor
through the image Mloc of Mloc in M̂.

4.6. Semi-Algebraic Sets over C[[t]]. Let LPas be the (first order) language
(in the sense of logic) with three sorts of variables: variables running over the
valued field C((t)) (= the fraction field of C[[t]]), variables running over the
value group Z, and variables running over the residue field C. The symbols
of LPas consist of the symbols of Presburger’s language LPres for Z (see 1.3),
symbols to denote +,− ,× , 0, 1 in C((t)) and in C, and symbols for the valuation
ord : C((t)) \ {0} → Z and for the function ac : C((t)) → C : γ 7→ the leading
coefficient of the series γ. (We use the convention that ac(0) = 0, ord 0 =
+∞, (+∞) + l = +∞ and +∞ ≡ l ≡ d, for all l in Z ∪ {+∞}.)

A theorem of Pas [1989] states that C((t)) has quantifier elimination in LPas.

A subset of C((t))n which is definable by a formula without quantifiers in
LPas is called semi-algebraic.

Proposition 4.6.1. Let X be as in 4.1, and let S ⊂ A(X) ⊂ (C[[t]])n be semi-
algebraic. Then πm(S) is a constructible subset of the algebraic variety Am(X).

Proof. An easy application of the Theorem of Pas. �

More generally one defines (in the obvious way) semi-algebraic subsets of A(X),
for any algebraic variety X over C. Obviously Proposition 4.6.1 remains valid.

4.7. Motivic integration on the arc space A(X). Motivic integration was
recently introduced by Kontsevich [1995] and further developed and refined by
Denef and Loeser [1999a].

Theorem 4.7.1 [Denef and Loeser 1999a]. Let X be as in Section 4.1 (or more
generally any algebraic variety over C). Let S ⊂ A(X) be semi-algebraic and
d = dimX. Then

µ(S) := lim
m→+∞

[πm(S)]L−md ∈ M̂
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exists in M̂. Moreover S 7→ µ(S) is an M̂-valued σ-additive measure on the
boolean algebra of semi-algebraic subsets of A(X).

We call µ the motivic measure on the arc space A(X) of X. This allows us to
define ∫

S

L
−θdµ :=

∑
m∈N

L
−mµ(θ−1(m)) ∈ M̂,

for any θ : A(X) → N which is definable in LPas. These motivic integrals have
nice properties, such as an analogue of the classical change of variables formula;
see [Denef and Loeser 1999a].

4.8. Some Ideas in the Proof of the Rationality Theorem. We only
consider the weaker assertion that the image of P̃ (T ) in M̂[[T ]] is rational. (The
proof of the original statement is more difficult.) To prove this weaker assertion,
we consider the motivic measure µ on the arc space A(Am) = (C[[t]])n. For
m ∈ N \ {0}, put

Sm := {γ ∈ (C[[t]])n | ∃γ′ ∈ (C[[t]])n : f(γ′) = 0, γ ≡ γ′ ≡ tm}.

Then
[Ãm(X)] = µ(Sm)Lmn in M̂,

where X is the locus of f = 0. The proof of the weaker assertion above proceeds
now in close analogy with the proof of the rationality of P̃ (T ) in the p-adic case
(using resolution of singularities, but no cell decomposition). �

4.9. Construction of New Invariants of Algebraic Varieties. p-adic inte-
gration was used by Denef and Loeser [1992] (see also [Denef 1991]) to obtain new
geometric invariants, such as the topological zeta functions. These are calculated
from a resolution of singularities using Euler characteristics and multiplicities.
(Independence from the chosen resolution is proved by p-adic integration and use
of the Grotendieck–Lefschetz trace formula.) See [Veys 1999] for related work.

Kontsevich [1995] obtained many more geometric invariants using motivic
integration instead of p-adic integration. (This makes it possible to work with
Hodge polynomials instead of Euler characteristics.) In the same paper he also
used motivic integration to prove the conjecture that birationally isomorphic
Calabi–Yau manifolds have the same Hodge numbers. (That they have the same
Betti numbers was proved before by Batyrev [1997a] using p-adic integration.)

Denef and Loeser [1998; 1999a] have obtained some more geometric invariants
by motivic integration. For example, if X is an algebraic variety over C, one can
consider

χ(µ(A(X))) ∈ Q,

where χ denotes the Euler characteristic, since

µ(A(X)) ∈M loc[((1 + L+ L2 + · · ·+ Li)−1)i∈N ].
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(Recall that Mloc is the image of Mloc in M̂.) When X is nonsingular we have
χ(µ(A(X))) = χ(X), but for singular X one gets something new which can be
expressed in terms of Euler characteristics of the exceptional divisors (and their
intersections) of a suitable resolution of singularities of X. Similar invariants
can be defined using Hodge polynomials.

Very recently Batyrev [1998; 1997b] constructed some related new invariants
(for algebraic varieties with “mild” singularities) which he calls the “string Euler
characteristic” and the “string Hodge numbers”. They play a role in quantum
cohomology and mirror symmetry.

For connections with the theory of motives, see [Denef and Loeser 1998;
1999b].
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subanalytic set”, in Séminaire de Théorie des Nombres de Bordeaux, 1987–88, Univ.
Bordeaux I, Talence, 1988. Exposé 43.
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edited by F. Leja, Ksiażnica atlas, Warsaw, 1930.

[Robinson 1956] A. Robinson, Complete theories, North-Holland, Amsterdam, 1956.

[Robinson 1993] Z. Robinson, “Smooth points of p-adic subanalytic sets”, Manuscripta
Math. 80:1 (1993), 45–71.

[Robinson 1997] Z. Robinson, “Flatness and smooth points of p-adic subanalytic sets”,
Ann. Pure Appl. Logic 88:2-3 (1997), 217–225.

[Sato 1989] F. Sato, “On functional equations of zeta distributions”, pp. 465–508 in
Automorphic forms and geometry of arithmetic varieties, Academic Press, Boston,
MA, 1989.



198 JAN DENEF

[du Sautoy 1993] M. P. F. du Sautoy, “Finitely generated groups, p-adic analytic groups
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