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Preface

This book is meant for students in their introductory heat transfer course
— students who have learned calculus (through ordinary differential equa-
tions) and basic thermodynamics. We include the needed background in
fluid mechanics, although students will be better off if they have had
an introductory course in fluids. An integrated introductory course in
thermofluid engineering should also be a sufficient background for the
material here.

Our major objectives in rewriting the 1987 edition have been to bring
the material up to date and make it as clear as possible. We have substan-
tially revised the coverage of thermal radiation, unsteady conduction,
and mass transfer. We have replaced most of the old physical property
data with the latest reference data. New correlations have been intro-
duced for forced and natural convection and for convective boiling. The
treatment of thermal resistance has been reorganized. Dozens of new
problems have been added. And we have revised the treatment of turbu-
lent heat transfer to include the use of the law of the wall. In a number of
places we have rearranged material to make it flow better, and we have
made many hundreds of small changes and corrections so that the text
will be more comfortable and reliable. Lastly, we have eliminated Roger
Eichhorn’s fine chapter on numerical analysis, since that topic is now
most often covered in specialized courses on computation.

This book reflects certain viewpoints that instructors and students
alike should understand. The first is that ideas once learned should not
be forgotten. We have thus taken care to use material from the earlier
parts of the book in the parts that follow them. Two exceptions to this
are Chapter 10 on thermal radiation, which may safely be taught at any
point following Chapter 2, and Chapter 11 on mass transfer, which draws
only on material through Chapter 8.
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We believe that students must develop confidence in their own ability
to invent means for solving problems. The examples in the text therefore
do not provide complete patterns for solving the end-of-chapter prob-
lems. Students who study and absorb the text should have no unusual
trouble in working the problems. The problems vary in the demand that
they lay on the student, and we hope that each instructor will select those
that best challenge their own students.

The first three chapters form a minicourse in heat transfer, which is
applied in all subsequent chapters. Students who have had a previous
integrated course thermofluids may be familiar with this material, but
to most students it will be new. This minicourse includes the study of
heat exchangers, which can be understood with only the concept of the
overall heat transfer coefficient and the first law of thermodynamics.

We have consistently found that students new to the subject are greatly
encouraged when they encounter a solid application of the material, such
as heat exchangers, early in the course. The details of heat exchanger de-
sign obviously require an understanding of more advanced concepts —
fins, entry lengths, and so forth. Such issues are best introduced after
the fundamental purposes of heat exchangers are understood, and we
develop their application to heat exchangers in later chapters.

This book contains more material than most teachers can cover in
three semester-hours or four quarter-hours of instruction. Typical one-
semester coverage might include Chapters 1 through 8 (perhaps skipping
some of the more specialized material in Chapters 5, 7, and 8), a bit of
Chapter 9, and the first four sections of Chapter 10.

We are grateful to the Dell Computer Corporation’s STAR Program,
the Keck Foundation, and the M.D. Anderson Foundation for their partial
support of this project.

JHL 1V, Houston, Texas
JHL V, Cambridge, Massachusetts
August 2003
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PART I

THE GENERAL PROBLEM OF HEAT
EXCHANGE







1. Introduction

The radiation of the sun in which the planet is incessantly plunged, pene-
trates the air, the earth, and the waters; its elements are divided, change
direction in every way, and, penetrating the mass of the globe, would raise
its temperature more and more, if the heat acquired were not exactly
balanced by that which escapes in rays from all points of the surface and
expands through the sky. The Analytical Theory of Heat, ). Fourier

1.1 Heat transfer

People have always understood that something flows from hot objects to
cold ones. We call that flow heat. In the eighteenth and early nineteenth
centuries, scientists imagined that all bodies contained an invisible fluid
which they called caloric. Caloric was assigned a variety of properties,
some of which proved to be inconsistent with nature (e.g., it had weight
and it could not be created nor destroyed). But its most important feature
was that it flowed from hot bodies into cold ones. It was a very useful
way to think about heat. Later we shall explain the flow of heat in terms
more satisfactory to the modern ear; however, it will seldom be wrong to
imagine caloric flowing from a hot body to a cold one.

The flow of heat is all-pervasive. It is active to some degree or another
in everything. Heat flows constantly from your bloodstream to the air
around you. The warmed air buoys off your body to warm the room you
are in. If you leave the room, some small buoyancy-driven (or convective)
motion of the air will continue because the walls can never be perfectly
isothermal. Such processes go on in all plant and animal life and in the
air around us. They occur throughout the earth, which is hot at its core
and cooled around its surface. The only conceivable domain free from
heat flow would have to be isothermal and totally isolated from any other
region. It would be “dead” in the fullest sense of the word — devoid of
any process of any kind.
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The overall driving force for these heat flow processes is the cooling
(or leveling) of the thermal gradients within our universe. The heat flows
that result from the cooling of the sun are the primary processes that we
experience naturally. The conductive cooling of Earth’s center and the ra-
diative cooling of the other stars are processes of secondary importance
in our lives.

The life forms on our planet have necessarily evolved to match the
magnitude of these energy flows. But while “natural man” is in balance
with these heat flows, “technological man”! has used his mind, his back,
and his will to harness and control energy flows that are far more intense
than those we experience naturally. To emphasize this point we suggest
that the reader make an experiment.

Experiment 1.1

Generate as much power as you can, in some way that permits you to
measure your own work output. You might lift a weight, or run your own
weight up a stairwell, against a stopwatch. Express the result in watts (W).
Perhaps you might collect the results in your class. They should generally
be less than 1 kW or even 1 horsepower (746 W). How much less might
be surprising.

Thus, when we do so small a thing as turning on a 150 W light bulb,
we are manipulating a quantity of energy substantially greater than a
human being could produce in sustained effort. The power consumed
by an oven, toaster, or hot water heater is an order of magnitude beyond
our capacity. The power consumed by an automobile can easily be three
orders of magnitude greater. If all the people in the United States worked
continuously like galley slaves, they could barely equal the output of even
a single city power plant.

Our voracious appetite for energy has steadily driven the intensity
of actual heat transfer processes upward until they are far greater than
those normally involved with life forms on earth. Until the middle of the
thirteenth century, the energy we use was drawn indirectly from the sun

1Some anthropologists think that the term Homo technologicus (technological man)
serves to define human beings, as apart from animals, better than the older term Homo
sapiens (man, the wise). We may not be as much wiser than the animals as we think we
are, but only we do serious sustained tool making.
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using comparatively gentle processes — animal power, wind and water
power, and the combustion of wood. Then population growth and defor-
estation drove the English to using coal. By the end of the seventeenth
century, England had almost completely converted to coal in place of
wood. At the turn of the eighteenth century, the first commercial steam
engines were developed, and that set the stage for enormously increased
consumption of coal. Europe and America followed England in these
developments.

The development of fossil energy sources has been a bit like Jules
Verne’s description in Around the World in Eighty Days in which, to win
arace, a crew burns the inside of a ship to power the steam engine. The
combustion of nonrenewable fossil energy sources (and, more recently,
the fission of uranium) has led to remarkably intense energy releases in
power-generating equipment. The energy transferred as heat in a nuclear
reactor is on the order of one million watts per square meter.

A complex system of heat and work transfer processes is invariably
needed to bring these concentrations of energy back down to human pro-
portions. We must understand and control the processes that divide and
diffuse intense heat flows down to the level on which we can interact with
them. To see how this works, consider a specific situation. Suppose we
live in a town where coal is processed into fuel-gas and coke. Such power
supplies used to be common, and they may return if natural gas supplies
ever dwindle. Let us list a few of the process heat transfer problems that
must be solved before we can drink a glass of iced tea.

o A variety of high-intensity heat transfer processes are involved with
combustion and chemical reaction in the gasifier unit itself.

e The gas goes through various cleanup and pipe-delivery processes
to get to our stoves. The heat transfer processes involved in these
stages are generally less intense.

e The gas is burned in the stove. Heat is transferred from the flame to
the bottom of the teakettle. While this process is small, it is intense
because boiling is a very efficient way to remove heat.

e The coke is burned in a steam power plant. The heat transfer rates
from the combustion chamber to the boiler, and from the wall of
the boiler to the water inside, are very intense.
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e The steam passes through a turbine where it is involved with many
heat transfer processes, including some condensation in the last
stages. The spent steam is then condensed in any of a variety of
heat transfer devices.

e Cooling must be provided in each stage of the electrical supply sys-
tem: the winding and bearings of the generator, the transformers,
the switches, the power lines, and the wiring in our houses.

e The ice cubes for our tea are made in an electrical refrigerator. It
involves three major heat exchange processes and several lesser
ones. The major ones are the condensation of refrigerant at room
temperature to reject heat, the absorption of heat from within the
refrigerator by evaporating the refrigerant, and the balancing heat
leakage from the room to the inside.

e Let’s drink our iced tea quickly because heat transfer from the room
to the water and from the water to the ice will first dilute, and then
warm, our tea if we linger.

A society based on power technology teems with heat transfer prob-
lems. Our aim is to learn the principles of heat transfer so we can solve
these problems and design the equipment needed to transfer thermal
energy from one substance to another. In a broad sense, all these prob-
lems resolve themselves into collecting and focusing large quantities of
energy for the use of people, and then distributing and interfacing this
energy with people in such a way that they can use it on their own puny
level.

We begin our study by recollecting how heat transfer was treated in
the study of thermodynamics and by seeing why thermodynamics is not
adequate to the task of solving heat transfer problems.

1.2 Relation of heat transfer to thermodynamics
The First Law with work equal to zero

The subject of thermodynamics, as taught in engineering programs, makes
constant reference to the heat transfer between systems. The First Law
of Thermodynamics for a closed system takes the following form on a
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Q=Wk+9£ -
dt dt

system

a) The general case b) No work transfer

Figure 1.1 The First Law of Thermodynamics for a closed system.

rate basis:
au
Q = Wk —_— (1.1)
\ J \ J (¢ dt J
positive toward positive away positive when
the system from the system the system’s

energy increases

where Q is the heat transfer rate and Wk is the work transfer rate. They
may be expressed in joules per second (J/s) or watts (W). The derivative
dUydt is the rate of change of internal thermal energy, U, with time, t.
This interaction is sketched schematically in Fig. 1.1a.

The analysis of heat transfer processes can generally be done with-
out reference to any work processes, although heat transfer might sub-
sequently be combined with work in the analysis of real systems. If p dV
work is the only work occuring, then eqgn. (1.1) is

av du
Q=rartar (e
This equation has two well-known special cases:
T
Constant volume process: Q= i—lt] = Mcy Z—t (1.2b)
Constant pressure process: Q= GZ—I;I = mcyp 66% (1.2¢)

where H = U + pV is the enthalpy, and ¢y and ¢, are the specific heat

capacities at constant volume and constant pressure, respectively.
When the substance undergoing the process is incompressible (so that

V is constant for any pressure variation), the two specific heats are equal:
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¢y = ¢p = ¢. The proper form of eqn. (1.2a) is then

_dU _dT

Q—E—mcﬂ (13)

Since solids and liquids can frequently be approximated as being incom-
pressible, we shall often make use of egn. (1.3).
If the heat transfer were reversible, then eqn. (1.2a) would become

das av du

2

—_——— —
Qrev Wkrev

That might seem to suggest that Q can be evaluated independently for in-
clusion in either eqgn. (1.1) or (1.3). However, it cannot be evaluated using
T dS, because real heat transfer processes are all irreversible and S is not
defined as a function of T in an irreversible process. The reader will recall
that engineering thermodynamics might better be named thermostatics,
because it only describes the equilibrium states on either side of irre-
versible processes.

Since the rate of heat transfer cannot be predicted using T dS, how
can it be determined? If U (t) were known, then (when Wk = 0) eqn. (1.3)
would give Q, but U(t) is seldom known a priori.

The answer is that a new set of physical principles must be introduced
to predict Q. The principles are transport laws, which are not a part of
the subject of thermodynamics. They include Fourier’s law, Newton’s law
of cooling, and the Stefan-Boltzmann law. We introduce these laws later
in the chapter. The important thing to remember is that a description
of heat transfer requires that additional principles be combined with the
First Law of Thermodynamics.

Reversible heat transfer as the temperature gradient vanishes

Consider a wall connecting two thermal reservoirs as shown in Fig. 1.2.
As long as Ty > T», heat will flow spontaneously and irreversibly from 1
to 2. In accordance with our understanding of the Second Law of Ther-
modynamics, we expect the entropy of the universe to increase as a con-
sequence of this process. If T» — Tj, the process will approach being
quasistatic and reversible. But the rate of heat transfer will also approach

2T = absolute temperature, S = entropy, V = volume, p = pressure, and “rev” denotes
a reversible process.
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Temperature profile for
steady state conduction

T, —

Thermal Thermal
reservoir #1 \ \ reservoir #2

at a constant Wall at a constant . B
temperature, temperature, Figure 1.2 Irreversible heat flow
T T2 between two thermal reservoirs through

an intervening wall.

zero if there is no temperature difference to drive it. Thus all real heat
transfer processes generate entropy.

Now we come to a dilemma: If the irreversible process occurs at
steady state, the properties of the wall do not vary with time. We know
that the entropy of the wall depends on its state and must therefore be
constant. How, then, does the entropy of the universe increase? We turn
to this question next.

Entropy production

The entropy increase of the universe as the result of a process is the sum
of the entropy changes of all elements that are involved in that process.
The rate of entropy production of the universe, Syn, resulting from the
preceding heat transfer process through a wall is

SUn = Sres 1+ Swall +Sres 2 (1.5)
—_—

= 0, since Swan
must be constant

where the dots denote time derivatives (i.e., x = dx/dt). Since the reser-
voir temperatures are constant,

- Q
Now Qres 1 iS negative and equal in magnitude to Qres 2, SO eqn. (1.5)
becomes
1 1

Sin = | Qe (7, - 7)- .7
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The term in parentheses is positive, so Syn > 0. This agrees with Clau-
sius’s statement of the Second Law of Thermodynamics.

Notice an odd fact here: The rate of heat transfer, Q, and hence Syn,
is determined by the wall’s resistance to heat flow. Although the wall
is the agent that causes the entropy of the universe to increase, its own
entropy does not change. Only the entropies of the reservoirs change.

1.3 Modes of heat transfer

Figure 1.3 shows an analogy that might be useful in fixing the concepts
of heat conduction, convection, and radiation as we proceed to look at
each in some detail.

Heat conduction

Fourier’s law. Joseph Fourier (see Fig. 1.4) published his remarkable
book Théorie Analytique de la Chaleurin 1822. In it he formulated a very
complete exposition of the theory of heat conduction.

Hebegan his treatise by stating the empirical law that bears his name:
the heat flux,> g (W/m?2), resulting from thermal conduction is proportional
to the magnitude of the temperature gradient and opposite to it in sign. If
we call the constant of proportionality, k, then

art
q=-k x (1.8)
The constant, k, is called the thermal conductivity. It obviously must have
the dimensions W/m-K, or J/m-s-K, or Btu/h-ft-°F if eqgn. (1.8) is to be
dimensionally correct.

The heat flux is a vector quantity. Equation (1.8) tells us that if temper-
ature decreases with x, g will be positive—it will flow in the x-direction.
If T increases with x, q will be negative—it will flow opposite the x-
direction. In either case, g will flow from higher temperatures to lower
temperatures. Equation (1.8) is the one-dimensional form of Fourier’s
law. We develop its three-dimensional form in Chapter 2, namely:

G=-kVT

3The heat flux, g, is a heat rate per unit area and can be expressed as Q /A, where A
is an appropriate area.



Help! The barn is on fire.

Let the water be analogous to heat, and let the people be analogous to the
heat transfer medium. Then:

Case 1

Case 3

The hose directs water from @ to independently of the med-
ium. This is analogous to thermal radiation in a vacuum or in most
gases.

In the bucket brigade, water goes from @ to through the
medium. This is analogous to conduction.

A single runner, representing the medium, carries water from @
to . This is analogous to convection.

Figure 1.3 An analogy for the three modes of heat transfer.

Y
il
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Figure 1.4 Baron Jean Baptiste Joseph Fourier (1768-1830). Joseph
Fourier lived a remarkable double life. He served as a high govern-
ment official in Napoleonic France and he was also an applied mathe-
matician of great importance. He was with Napoleon in Egypt between
1798 and 1801, and he was subsequently prefect of the administra-
tive area (or “Department”) of Isére in France until Napoleon’s first
fall in 1814. During the latter period he worked on the theory of
heat flow and in 1807 submitted a 234-page monograph on the sub-
ject. It was given to such luminaries as Lagrange and Laplace for
review. They found fault with his adaptation of a series expansion
suggested by Daniel Bernoulli in the eighteenth century. Fourier’s
theory of heat flow, his governing differential equation, and the now-
famous “Fourier series” solution of that equation did not emerge in
print from the ensuing controversy until 1822. (Etching from Por-
traits et Histoire des Hommes Utiles, Collection de Cinquante Portraits,
Société Montyon et Franklin 1839-1840).
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Example 1.1

The front of a slab of lead (k = 35 W/m-K) is kept at 110°C and the
back is kept at 50°C. If the area of the slab is 0.4 m? and it is 0.03 m
thick, compute the heat flux, q, and the heat transfer rate, Q.

SOLUTION. For the moment, we presume that dT/dx is a constant
equal to (Thack — Ttront)/ (Xback — Xfront); We verify this in Chapter 2.
Thus, eqn. (1.8) becomes

50 -110

_ 2 _ 2
0.03 > = +70,000 W/m* = 70 kW/m

q=-35 (
and
Q =qA=70(04) =28kW |

In one-dimensional heat conduction problems, there is never any real
problem in deciding which way the heat should flow. It is therefore some-
times convenient to write Fourier’s law in simple scalar form:

where L is the thickness in the direction of heat flow and g and AT are
both written as positive quantities. When we use egn. (1.9), we must
remember that g always flows from high to low temperatures.

Thermal conductivity values. It will help if we first consider how con-
duction occurs in, for example, a gas. We know that the molecular ve-
locity depends on temperature. Consider conduction from a hot wall to
a cold one in a situation in which gravity can be ignored, as shown in
Fig. 1.5. The molecules near the hot wall collide with it and are agitated
by the molecules of the wall. They leave with generally higher speed and
collide with their neighbors to the right, increasing the speed of those
neighbors. This process continues until the molecules on the right pass
their kinetic energy to those in the cool wall. Within solids, comparable
processes occur as the molecules vibrate within their lattice structure
and as the lattice vibrates as a whole. This sort of process also occurs,
to some extent, in the electron “gas” that moves through the solid. The
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Figure 1.5 Heat conduction through gas
separating two solid walls. { -

|

Temperature
profile

processes are more efficient in solids than they are in gases. Notice that

dar_ a1
—_—

since, in steady
conduction, ¢ is
constant

Thus solids, with generally higher thermal conductivities than gases,
yield smaller temperature gradients for a given heat flux. In a gas, by
the way, k is proportional to molecular speed and molar specific heat,
and inversely proportional to the cross-sectional area of molecules.

This book deals almost exclusively with S.I. units, or Systéme Interna-
tional d’Unités. Since much reference material will continue to be avail-
able in English units, we should have at hand a conversion factor for
thermal conductivity:

- J h ft 1.8°F
©0.0009478 Btu 3600s 0.3048m K

Thus the conversion factor from W/m-K to its English equivalent, Btu/h-
ft-°F, is

B W/m-K
1=1.731 TN W (1.11)

Consider, for example, copper—the common substance with the highest
conductivity at ordinary temperature:

W/m-K

Btu/h-ft-F = 221 Btu/h-ft-°F

kCu at room temp = (383 W/m'K)/1.731
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The range of thermal conductivities is enormous. As we see from
Fig. 1.6, k varies by a factor of about 10° between gases and diamond at
room temperature. This variation can be increased to about 107 if we in-
clude the effective conductivity of various cryogenic “superinsulations.”
(These involve powders, fibers, or multilayered materials that have been
evacuated of all air.) The reader should study and remember the order
of magnitude of the thermal conductivities of different types of materi-
als. This will be a help in avoiding mistakes in future computations, and
it will be a help in making assumptions during problem solving. Actual
numerical values of the thermal conductivity are given in Appendix A
(which is a broad listing of many of the physical properties you might
need in this course) and in Figs. 2.2 and 2.3.

Example 1.2

A copper slab (k = 372 W/m-K) is 3 mm thick. It is protected from
corrosion on each side by a 2-mm-thick layer of stainless steel (k = 17
W/m-K). The temperature is 400°C on one side of this composite wall
and 100°C on the other. Find the temperature distribution in the
copper slab and the heat conducted through the wall (see Fig. 1.7).

SOLUTION. If we recall Fig. 1.5 and eqn. (1.10), it should be clear that
the temperature drop will take place almost entirely in the stainless
steel, where k is less than 1/20 of k in the copper. Thus, the cop-
per will be virtually isothermal at the average temperature of (400 +
100)/2 = 250°C. Furthermore, the heat conduction can be estimated
in a 4 mm slab of stainless steel as though the copper were not even
there. With the help of Fourier’s law in the form of egn. (1.8), we get

AT 400 — 100
a=-kgo=17W/mK- ( 0.004

) K/m = 1275 kW/m?

The accuracy of this rough calculation can be improved by con-
sidering the copper. To do this we first solve for AT s and ATy (see
Fig. 1.7). Conservation of energy requires that the steady heat flux
through all three slabs must be the same. Therefore,

AT AT
(). )
L ( L Jss. L Jcu
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//// N//
400°C
Stainless
‘ N steel
ATg,
ATey
T Copper
LHS¢y \ TRHScu

Stainless T

steel

/ \\\ ATs.s.

“ / Figure 1.7 Temperature drop through a

Lo Leu __{ 100°C copper wall protected by stainless steel
— (Example 1.2).

but

(400 —100)°C = ATcy +2ATgs.
(k/L)Cu]
= AT [1 42—
cu (k/L)ss.
= (30.18)ATcu

Solving this, we obtain ATcy = 9.94 K. So ATss. = (300 —9.94)/2 =
145 K. It fOHOWS that TCu’ left = 2550C al’ld TCu’ right = 2450C.
The heat flux can be obtained by applying Fourier’s law to any of
the three layers. We consider either stainless steel layer and get
W 145K

_17 W 13>k 2
Q=17 oo = 1233 kW/m

Thus our initial approximation was accurate within a few percent. i

One-dimensional heat diffusion equation. In Example 1.2 we had to
deal with a major problem that arises in heat conduction problems. The
problem is that Fourier’s law involves two dependent variables, T and
gd. To eliminate g and first solve for T, we introduced the First Law of
Thermodynamics implicitly: Conservation of energy required that g was
the same in each metallic slab.

The elimination of g from Fourier’s law must now be done in a more
general way. Consider a one-dimensional element, as shown in Fig. 1.8.
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T=Tix,1)

oT
= _kA o—
Ox
x +8x
T or T
x Ox o5 Ox
x X x
= -kA &
X + 8X Qnet 8)( X
— T By the
T2 definition
x of aderivative

Figure 1.8 One-dimensional heat conduction through a differ-
ential element.

From Fourier’s law applied at each side of the element, as shown, the net
heat conduction out of the element during general unsteady heat flow is
0°T
dnetA = Qnet = —kA X2 0x (1.12)
X
To eliminate the heat loss Qnet in favor of T, we use the general First
Law statement for closed, nonworking systems, eqn. (1.3):

au A(T — Trer)

—Qnet = — = pcA

ar
1t at 0X = pcA——06x (1.13)

dt

where p is the density of the slab and c is its specific heat capacity.?
Equations (1.12) and (1.13) can be combined to give

(e9)
~

(1.14)

R
(e))

O°T _ pedT
ox2 k ot

t

4The reader might wonder if ¢ should be ¢, or ¢,. This is a strictly incompressible
equation so ¢, = ¢y, = ¢. The compressible equation involves additional terms, and
this particular term emerges with c,, in it in the conventional rearrangements of terms.
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Figure 1.9 The convective cooling of a heated body.

This is the one-dimensional heat diffusion equation. Its importance is
this: By combining the First Law with Fourier’s law, we have eliminated
the unknown Q and obtained a differential equation that can be solved
for the temperature distribution, T (x, t). It is the primary equation upon
which all of heat conduction theory is based.

The heat diffusion equation includes a new property which is as im-
portant to transient heat conduction as k is to steady-state conduction.
This is the thermal diffusivity, «

k] mdkgK

2 2
pc msK kg )~ X M/ (or ft/hr).

(04

The thermal diffusivity is a measure of how quickly a material can carry
heat away from a hot source. Since material does not just transmit heat
but must be warmed by it as well, &« involves both the conductivity, k,
and the volumetric heat capacity, pc.

Heat Convection

The physical process. Consider a typical convective cooling situation.
Cool gas flows past a warm body, as shown in Fig. 1.9. The fluid imme-
diately adjacent to the body forms a thin slowed-down region called a
boundary layer. Heat is conducted into this layer, which sweeps it away
and, farther downstream, mixes it into the stream. We call such processes
of carrying heat away by a moving fluid convection.

In 1701, Isaac Newton considered the convective process and sug-
gested that the cooling would be such that

dTbody
dat

o< Thody — T (1.15)

where T, is the temperature of the oncoming fluid. This statement sug-
gests that energy is flowing from the body. But if the energy of the body
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is constantly replenished, the body temperature need not change. Then
with the help of eqn. (1.3) we get, from eqn. (1.15) (see Problem 1.2),

Q o< Thody — Teo (1.16)

This equation can be rephrased in terms of g = Q/A as

a = (Toody — T (1.17)

This is the steady-state form of Newton’s law of cooling, as it is usually
quoted, although Newton never wrote such an expression.

The constant h is the film coefficient or heat transfer coefficient. The
bar over h indicates that it is an average over the surface of the body.
Without the bar, h denotes the “local” value of the heat transfer coef-
ficient at a point on the surface. The units of h and h are W/m?K or
J/s-m?K. The conversion factor for English units is:

| _ 00009478 Btu K 36005 (0.3048 m)?
- J 1.8°F h ft2

or

Btu/h-ft2°F

1=0.1761
0.176 W,/m?K

(1.18)

It turns out that Newton oversimplified the process of convection
when he made his conjecture. Heat convection is complicated and h
can depend on the temperature difference Tyody — Two = AT. In Chap-
ter 6 we find that h really is independent of AT in situations in which
fluid is forced past a body and AT is not too large. This is called forced
convection.

When fluid buoys up from a hot body or down from a cold one, h
varies as some weak power of AT—typically as ATY/4 or AT'/3. This is
called free or natural convection. If the body is hot enough to boil a liquid
surrounding it, h will typically vary as AT?2.

For the moment, we restrict consideration to situations in which New-
ton’s law is either true or at least a reasonable approximation to real
behavior.

We should have some idea of how large h might be in a given situ-
ation. Table 1.1 provides some illustrative values of h that have been
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Table 1.1 Some illustrative values of convective heat transfer
coefficients

Situation h, W/m?K
Natural convection in gases

e 0.3 m vertical wall in air, AT = 30°C 4.33
Natural convection in liquids

e 40 mm O.D. horizontal pipe in water, AT = 30°C 570

e 0.25 mm diameter wire in methanol, AT = 50°C 4,000
Forced convection of gases

e Air at 30 m/s over a 1 m flat plate, AT = 70°C 80
Forced convection of liquids

e Water at 2 m/s over a 60 mm plate, AT = 15°C 590

e Aniline-alcohol mixture at 3 m/s in a 25 mm LD. tube, AT = 80°C 2,600

e Liquid sodium at 5 m/s in a 13 mm L.D. tube at 370°C 75,000
Boiling water

e During film boiling at 1 atm 300

o In a tea kettle 4,000

e At a peak pool-boiling heat flux, 1 atm 40,000

e At a peak flow-boiling heat flux, 1 atm 100,000

e At approximate maximum convective-boiling heat flux, under

optimal conditions 106

Condensation

e In a typical horizontal cold-water-tube steam condenser 15,000

e Same, but condensing benzene 1,700

¢ Dropwise condensation of water at 1 atm 160,000

observed or calculated for different situations. They are only illustrative
and should not be used in calculations because the situations for which
they apply have not been fully described. Most of the values in the ta-
ble could be changed a great deal by varying quantities (such as surface
roughness or geometry) that have not been specified. The determination
of h or h is a fairly complicated task and one that will receive a great
deal of our attention. Notice, too, that h can change dramatically from
one situation to the next. Reasonable values of h range over about six
orders of magnitude.
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Example 1.3

The heat flux, g, is 6000 W/m? at the surface of an electrical heater.
The heater temperature is 120°C when it is cooled by air at 70°C.
What is the average convective heat transfer coefficient, h? What will
the heater temperature be if the power is reduced so that g is 2000
W/m?2?

SOLUTION.

_d 6000

q _ 6000 2
AT ~ 120_70 ~ 120W/mK

If the heat flux is reduced, h should remain unchanged during forced
convection. Thus

. q 2000 W/m?
AT = Tj -70°C=== ———5=-=16.67K
heater 7 120 W/mzK
SO Theater = 70 + 16.67 = 86.67°C |

Lumped-capacity solution. We now wish to deal with a very simple but
extremely important, kind of convective heat transfer problem. The prob-
lem is that of predicting the transient cooling of a convectively cooled
object, such as we showed in Fig. 1.9. With reference to Fig. 1.10, we
apply our now-familiar First law statement, eqn. (1.3), to such a body:

AU
Q - @ (1.19)

Y

“RA(T - Ta) % [PCV(T = Tyer)]

where A and V are the surface area and volume of the body, T is the
temperature of the body, T = T(t), and Tyf is the arbitrary temperature
at which U is defined equal to zero. Thus®

d(T-Ts) _ hA
i = ey T T (1.20)

>Is it clear why (T — Ter) has been changed to (T — T. ) under the derivative? Remem-
ber that the derivative of a constant (like Ty Or T ) is zero. We can therefore introduce
(T — T») without invalidating the equation, and get the same dependent variable on
both sides of the equation.
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Figure 1.10 The cooling of a body for which the Biot number,

hL/kyp, is small.

The general solution to this equation is

In(T - Ty) =

t

S E——
(pcV/hA)

(1.21)

The group pcV/hA is the time constant, T. If the initial temperature is
T(t =0) = T;, then C = In(T; — Tw), and the cooling of the body is given

by

T_Too

— o tIT

(1.22)

All of the physical parameters in the problem have now been “lumped”
into the time constant. It represents the time required for a body to cool
to 1/e, or 37% of its initial temperature difference above (or below) Tx.

x{m)
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The ratio t/T can also be interpreted as

t hAt (J/°C) _ capacity for convection from surface

T pcV (/0 heat capacity of the body

(1.23)

Notice that the thermal conductivity is missing from eqgns. (1.22) and
(1.23). The reason is that we have assumed that the temperature of the
body is nearly uniform, and this means that internal conduction is not
important. We see in Fig. 1.10 that, if L/(kp/ h) < 1, the temperature of
the body, T}, is almost constant within the body at any time. Thus

Zi < 1 implies that Ty (x,t) = T(t) = Tsurface

and the thermal conductivity, kp, becomes irrelevant to the cooling pro-
cess. This condition must be satisfied or the lumped-capacity solution
will not be accurate.

We call the group hL/kj, the Biot number®, Bi. If Bi were large, of
course, the situation would be reversed, as shown in Fig. 1.11. In this
case Bi = hL/ky > 1 and the convection process offers little resistance
to heat transfer. We could solve the heat diffusion equation

o1 _1or
0x2 ot

subject to the simple boundary condition T(x,t) = T, when x = L, to
determine the temperature in the body and its rate of cooling in this case.
The Biot number will therefore be the basis for determining what sort of
problem we have to solve.

To calculate the rate of entropy production in a lumped-capacity sys-
tem, we note that the entropy change of the universe is the sum of the
entropy decrease of the body and the more rapid entropy increase of
the surroundings. The source of irreversibility is heat flow through the
boundary layer. Accordingly, we write the time rate of change of entropy
of the universe, dSyn/dt = Sun, as

_Qrev + @
Ty Too

Sun = Sp + Ssurroundings =

6Pronounced Bee-oh. ].B. Biot, although younger than Fourier, worked on the anal-
ysis of heat conduction even earlier—in 1802 or 1803. He grappled with the problem
of including external convection in heat conduction analyses in 1804 but could not see
how to do it. Fourier read Biot’s work and by 1807 had determined how to analyze the
problem. (Later we encounter a similar dimensionless group called the Nusselt num-
ber, Nu = hL/kgayuq. The latter relates only to the boundary layer and not to the body
being cooled. We deal with it extensively in the study of convection.)
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Figure 1.11 The cooling of a body for which the Biot number,
hL/ky, is large.

or

N TR G

aTty < 1 1 )

dt ’

We can multiply both sides of this equation by dt and integrate the right-
hand side from T, (t = 0) = Tyg to T}, at the time of interest:

Tp
AS = —pcV ( ! !

—_— - —) aTp. (1.24)

Tpo \Teo  Tp

Equation 1.24 will give a positive AS whether T}, > T or T, < T« because
the sign of d T}, will always opposed the sign of the integrand.

Example 1.4

A thermocouple bead is largely solder, 1 mm in diameter. Itis initially
at room temperature and is suddenly placed in a 200°C gas flow. The
heat transfer coefficient h is 250 W/m?2K, and the effective values
of k, p, and ¢ are 45 W/m-K, 9300 kg/m3, and ¢ = 0.18 kJ/kg-K,
respectively. Evaluate the response of the thermocouple.
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SOLUTION. The time constant, T, is

pcV._ pe mD/6 _ pcD

hA h mwD?2  6h

(9300)(0.18)(0.001) kg kJ _ m2K 1000 W
6(250) md kg K W KJ/s

T:

= 1.116s

Therefore, eqn. (1.22) becomes

T —200°C _ e—t/1.116

(20— 200)°C _ or T =200 — 180 ¢~ t/1.116 o

This resultis plotted in Fig. 1.12, where we see that, for all practical
purposes, this thermocouple catches up with the gas stream in less
than 5 s. Indeed, it should be apparent that any such system will
come within 95% of the signal in three time constants. Notice, too,
that if the response could continue at its initial rate, the thermocouple
would reach the signal temperature in one time constant.

This calculation is based entirely on the assumption that Bi <« 1
for the thermocouple. We must check that assumption:

hL _ (250 W/m*K)(0.001 m)/2

Bi= 45 W/m-K

= 0.00278

This is very small indeed, so the assumption is valid. |

Experiment 1.2

Invent and carry out a simple procedure for evaluating the time con-
stant of a fever thermometer in your mouth.

Radiation

Heat transfer by thermal radiation. All bodies constantly emit energy
by a process of electromagnetic radiation. The intensity of such energy
flux depends upon the temperature of the body and the nature of its
surface. Most of the heat that reaches you when you sit in front of a fire
is radiant energy. Radiant energy browns your toast in an electric toaster
and it warms you when you walk in the sun.
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Figure 1.12 Thermocouple response to a hot gas flow.

Objects that are cooler than the fire, the toaster, or the sun emit much
less energy because the energy emission varies as the fourth power of ab-
solute temperature. Very often, the emission of energy, or radiant heat
transfer, from cooler bodies can be neglected in comparison with con-
vection and conduction. But heat transfer processes that occur at high
temperature, or with conduction or convection suppressed by evacuated
insulations, usually involve a significant fraction of radiation.

Experiment 1.3

Open the freezer door to your refrigerator. Put your face near it, but
stay far enough away to avoid the downwash of cooled air. This way you
cannot be cooled by convection and, because the air between you and the
freezer is a fine insulator, you cannot be cooled by conduction. Still your
face will feel cooler. The reason is that you radiate heat directly into the
cold region and it radiates very little heat to you. Consequently, your
face cools perceptibly.
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Table 1.2 Forms of the electromagnetic wave spectrum

Characterization Wavelength, A
Cosmic rays < 0.3 pm
Gamma rays 0.3-100 pm
X rays 0.01-30 nm
Ultraviolet light 3-400 nm

Visible light 0.4-0.7 pm Thermal Radiation

Near infrared radiation 0.7-30 pm 0.1-1000 ym

Far infrared radiation 30-1000 pm
Millimeter waves 1-10 mm
Microwaves 10-300 mm
Shortwave radio & TV 300 mm-100 m
Longwave radio 100 m-30 km

The electromagnetic spectrum. Thermal radiation occurs in a range
of the electromagnetic spectrum of energy emission. Accordingly, it ex-
hibits the same wavelike properties as light or radio waves. Each quan-
tum of radiant energy has a wavelength, A, and a frequency, v, associated
with it.

The full electromagnetic spectrum includes an enormous range of
energy-bearing waves, of which heat is only a small part. Table 1.2 lists
the various forms over a range of wavelengths that spans 17 orders of
magnitude. Only the tiniest “window” exists in this spectrum through
which we can see the world around us. Heat radiation, whose main com-
ponent is usually the spectrum of infrared radiation, passes through the
much larger window—about three orders of magnitude in A or v.

Black bodies. The model for the perfect thermal radiator is a so-called
black body. This is a body which absorbs all energy that reaches it and
reflects nothing. The term can be a little confusing, since such bodies
emit energy. Thus, if we possessed infrared vision, a black body would
glow with “color” appropriate to its temperature. of course, perfect ra-
diators are “black” in the sense that they absorb all visible light (and all
other radiation) that reaches them.
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Figure 1.13 Cross section of a spherical hohlraum. The hole
has the attributes of a nearly perfect thermal black body.

It is necessary to have an experimental method for making a perfectly
black body. The conventional device for approaching this ideal is called
by the German term hohlraum, which literally means “hollow space”.
Figure 1.13 shows how a hohlraum is arranged. It is simply a device that
traps all the energy that reaches the aperture.

What are the important features of a thermally black body? First
consider a distinction between heat and infrared radiation. Infrared ra-
diation refers to a particular range of wavelengths, while heat refers to
the whole range of radiant energy flowing from one body to another.
Suppose that a radiant heat flux, g, falls upon a translucent plate that
is not black, as shown in Fig. 1.14. A fraction, «, of the total incident
energy, called the absorptance, is absorbed in the body; a fraction, p,

2
qW/m
(Incident /

energy flux) //

// Pq (Reflected)

7
2 pd
N\
3 aq (Absorbed) //\\\ {
N
<

N
N

\ Figure 1.14 The distribution of energy

Tq (Transmitted) incident on a translucent slab.
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called the reflectance, is reflected from it; and a fraction, T, called the
transmittance, passes through. Thus

l=a+p+T71 (1.25)

This relation can also be written for the energy carried by each wave-
length in the distribution of wavelengths that makes up heat from a
source at any temperature:

1 =0o0)+pr+TA (1.26)

All radiant energy incident on a black body is absorbed, so that «; or
xp, = 1 and pp = Tp = 0. Furthermore, the energy emitted from a
black body reaches a theoretical maximum, which is given by the Stefan-
Boltzmann law. We look at this next.

The Stefan-Boltzmann law. The flux of energy radiating from a body
is commonly designated e(T) W/m?. The symbol e, (A, T) designates the
distribution function of radiative flux in A, or the monochromatic emissive
power:

de(A,T)

A
A or e(A\,T) = Jo ex(A,T)dA (1.27)

ex(A,T) =
Thus
e(T) =E(o0,T) = JOOO ex(A,T)dA
The dependence of e(T) on T for a black body was established experi-

mentally by Stefan in 1879 and explained by Boltzmann on the basis of
thermodynamics arguments in 1884. The Stefan-Boltzmann law is

ep(T) =0T (1.28)

where the Stefan-Boltzmann constant, o, is 5.670400 x 10~8 W/m?-K*4
or 1.714 x 1079 Btu/hr-ft?-°R%, and T is the absolute temperature.

ejp vs. A.  Nature requires that, at a given temperature, a body will emit
a unique distribution of energy in wavelength. Thus, when you heat a
poker in the fire, it first glows a dull red—emitting most of its energy
at long wavelengths and just a little bit in the visible regime. When it is
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white-hot, the energy distribution has been both greatly increased and
shifted toward the shorter-wavelength visible range. At each tempera-
ture, a black body yields the highest value of e) that a body can attain.

The very accurate measurements of the black-body energy spectrum
by Lummer and Pringsheim (1899) are shown in Fig. 1.15. The locus of
maxima of the curves is also plotted. It obeys a relation called Wien'’s
law:

(AT)e, ... = 2898 um-K (1.29)

About three-fourths of the radiant energy of a black body lies to the right
of this line in Fig. 1.15. Notice that, while the locus of maxima leans
toward the visible range at higher temperatures, only a small fraction of
the radiation is visible even at the highest temperature.

Predicting how the monochromatic emissive power of a black body
depends on A was an increasingly serious problem at the close of the
nineteenth century. The prediction was a keystone of the most profound
scientific revolution the world has seen. In 1901, Max Planck made the
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prediction, and his work included the initial formulation of quantum me-
chanics. He found that

o 21hc?
A = A5 [exp(hce /kgTA) — 1]
where ¢, is the speed of light, 2.99792458 x 108 m/s; h is Planck’s con-

stant, 6.62606876x1034 J-s; and kp is Boltzmann’s constant, 1.3806503 x
1023 J/K.

(1.30)

Radiant heat exchange. Suppose that a heated object (1 in Fig. 1.16a)
radiates only to some other object (2) and that both objects are thermally
black. All heat leaving object 1 arrives at object 2, and all heat arriving
at object 1 comes from object 2. Thus, the net heat transferred from
object 1 to object 2, Qnet, is the difference between Q12 = Arep(T1)
and Q201 = Arep(T2)

Quet = A1ep(T1) — Arey(T2) = Ao (T - T3) (1.31)

If the first object “sees” other objects in addition to object 2, as indicated
in Fig. 1.16b, then a view factor (sometimes called a configuration factor
or a shape factor), F1-», must be included in eqn. (1.31):

Qnet = A1F12 07 (T} - T3 (1.32)

We may regard Fi-» as the fraction of energy leaving object 1 that is
intercepted by object 2.

Example 1.5

A black thermocouple measures the temperature in a chamber with
black walls. If the air around the thermocouple is at 20°C, the walls
are at 100°C, and the heat transfer coefficient between the thermocou-
ple and the air is 75 W/m?K, what temperature will the thermocouple
read?

SOLUTION. The heat convected away from the thermocouple by the
air must exactly balance that radiated to it by the hot walls if the sys-
tem is in steady state. Furthermore, F1_» = 1 since the thermocouple
(1) radiates all its energy to the walls (2):

EAtC (Ttc — Tair) = —Qnet = _Atc0'<Tt4c - Téall)
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Figure 1.16 The net radiant heat transfer from one object to
another.

or, with T in °C,

75(Tte — 20) W/m? =
5.6704 x 1078 [ (100 + 273)* — (Tye + 273)*] W/m?
since T for radiation must be in kelvin. Trial-and-error solution of

this equation yields T;. = 28.4°C. |

We have seen that non-black bodies absorb less radiation than black
bodies, which are perfect absorbers. Likewise, non-black bodies emit less
radiation than black bodies, which also happen to be perfect emitters. We
can characterize the emissive power of a non-black body using a property
called emittance, ¢:

€non-black = &€p = eoT? (1.33)

where 0 < € < 1. When radiation is exchanged between two bodies that
are not black, we have

Quet = A1 F120 (T = T3) (1.34)

where the transfer factor, F1-», depends on the emittances of both bodies
as well as the geometrical “view”.
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The expression for Fj-» is particularly simple in the important special
case of a small object, 1, in a much larger isothermal environment, 2:

Fro =5 for A; < A (1.35)

Example 1.6

Suppose that the thermocouple in Example 1.5 was not black and
had an emissivity of € = 0.4. Further suppose that the walls were
not black and had a much larger surface area than the thermocouple.
What temperature would the thermocouple read?

SOLUTION. Qpet is now given by eqn. (1.34) and ‘F;-» can be found
with eqn. (1.35):
hAte (Tee — Tair) = —AtcEtCU(TfC - T4all>

Wi

or

75(Tte — 20) W/m? =
(0.4)(5.6704 x 1078) [(100 +273)4 = (Tye + 273)4] W/m?

Trial-and-error yields T;. = 23.5°C. |

Radiation shielding. The preceding examples point out an important
practical problem than can be solved with radiation shielding. The idea
is as follows: If we want to measure the true air temperature, we can
place a thin foil casing, or shield, around the thermocouple. The casing
is shaped to obstruct the thermocouple’s “view” of the room but to permit
the free flow of the air around the thermocouple. Then the shield, like
the thermocouple in the two examples, will be cooler than the walls, and
the thermocouple it surrounds will be influenced by this much cooler
radiator. If the shield is highly reflecting on the outside, it will assume a
temperature still closer to that of the air and the error will be still less.
Multiple layers of shielding can further reduce the error.

Radiation shielding can take many forms and serve many purposes.
It is an important element in superinsulations. A glass firescreen in a
fireplace serves as a radiation shield because it is largely opaque to ra-
diation. It absorbs heat radiated by the fire and reradiates that energy
(ineffectively) at a temperature much lower than that of the fire.
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Experiment 1.4

Find a small open flame that produces a fair amount of soot. A candle,
kerosene lamp, or a cutting torch with a fuel-rich mixture should work
well. A clean blue flame will not work well because such gases do not
radiate much heat. First, place your finger in a position about 1 to 2 cm
to one side of the flame, where it becomes uncomfortably hot. Now take
a piece of fine mesh screen and dip it in some soapy water, which will fill
up the holes. Put it between your finger and the flame. You will see that
your finger is protected from the heating until the water evaporates.

Water is relatively transparent to light. What does this experiment
show you about the transmittance of water to infrared wavelengths?

1.4 A look ahead

What we have done up to this point has been no more than to reveal the
tip of the iceberg. The basic mechanisms of heat transfer have been ex-
plained and some quantitative relations have been presented. However,
this information will barely get you started when you are faced with a real
heat transfer problem. Three tasks, in particular, must be completed to
solve actual problems:

e The heat diffusion equation must be solved subject to appropriate
boundary conditions if the problem involves heat conduction of any
complexity.

e The convective heat transfer coefficient, h, must be determined if
convection is important in a problem.

e The factor Fi-» or Fi1-» must be determined to calculate radiative
heat transfer.

Any of these determinations can involve a great deal of complication,
and most of the chapters that lie ahead are devoted to these three basic
problems.

Before becoming engrossed in these three questions, we shall first
look at the archetypical applied problem of heat transfer-namely, the
design of a heat exchanger. Chapter 2 sets up the elementary analytical
apparatus that is needed for this, and Chapter 3 shows how to do such



36

Introduction §1.5

design if h is already known. This will make it easier to see the impor-
tance of undertaking the three basic problems in subsequent parts of the
book.

1.5 Problems

We have noted that this book is set down almost exclusively in S.I. units.
The student who has problems with dimensional conversion will find
Appendix B helpful. The only use of English units appears in some of the
problems at the end of each chapter. A few such problems are included
to provide experience in converting back into English units, since such
units will undoubtedly persist in the U.S.A. for many more years.

Another matter often leads to some discussion between students and
teachers in heat transfer courses. That is the question of whether a prob-
lem is “theoretical” or “practical”. Quite often the student is inclined to
view as “theoretical” a problem that does not involve numbers or that
requires the development of algebraic results.

The problems assigned in this book are all intended to be useful in
that they do one or more of five things:

1. They involve a calculation of a type that actually arises in practice
(e.g., Problems 1.1, 1.3, 1.8 to 1.18, and 1.21 through 1.25).

2. They illustrate a physical principle (e.g., Problems 1.2, 1.4 to 1.7,
1.9, 1.20, 1.32, and 1.39). These are probably closest to having a
“theoretical” objective.

3. They ask you to use methods developed in the text to develop other
results that would be needed in certain applied problems (e.g., Prob-
lems 1.10,1.16,1.17,and 1.21). Such problems are usually the most
difficult and the most valuable to you.

4. They anticipate development that will appear in subsequent chap-
ters (e.g., Problems 1.16, 1.20, 1.40, and 1.41).

5. They require that you develop your ability to handle numerical and
algebraic computation effectively. (This is the case with most of the
problems in Chapter 1, but it is especially true of Problems 1.6 to
1.9, 1.15, and 1.17).
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Partial numerical answers to some of the problems follow them in
brackets. Tables of physical property data useful in solving the problems
are given in Appendix A.

Actually, we wish to look at the theory, analysis, and practice of heat
transfer—all three—according to Webster’s definitions:

Theory: “a systematic statement of principles; a formulation of apparent
relationships or underlying principles of certain observed phenom-

ena.

Analysis: “the solving of problems by the means of equations; the break-
ing up of any whole into its parts so as to find out their nature,
function, relationship, etc.”

Practice: “the doing of something as an application of knowledge.”

Problems

1.1 A composite wall consists of alternate layers of fir (5 cm thick),
aluminum (1 cm thick), lead (1 cm thick), and corkboard (6
cm thick). The temperature is 60°C on the outside of the for
and 10°C on the outside of the corkboard. Plot the tempera-
ture gradient through the wall. Does the temperature profile
suggest any simplifying assumptions that might be made in
subsequent analysis of the wall?

1.2 Verify eqgn. (1.15).

1.3 q = 5000 W/m?ina 1 cmslab and T = 140°C on the cold side.
Tabulate the temperature drop through the slab if it is made
of

e Silver

e Aluminum

o Mild steel (0.5 % carbon)

e Ice

e Spruce

¢ Insulation (85 % magnesia)
¢ Silica aerogel

Indicate which situations would be unreasonable and why.
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1.4

1.5

1.6

1.7

1.8

Explain in words why the heat diffusion equation, eqgn. (1.13),
shows that in transient conduction the temperature depends
on the thermal diffusivity, «, but we can solve steady conduc-
tion problems using just k (as in Example 1.1).

A 1 m rod of pure copper 1 cm? in cross section connects
a 200°C thermal reservoir with a 0°C thermal reservoir. The
system has already reached steady state. What are the rates
of change of entropy of (a) the first reservoir, (b) the second
reservoir, (c) the rod, and (d) the whole universe, as a result of
the process? Explain whether or not your answer satisfies the
Second Law of Thermodynamics. [(d): +0.0120 W/K.]

Two thermal energy reservoirs at temperatures of 27°C and
—43°C, respectively, are separated by a slab of material 10
cm thick and 930 cm? in cross-sectional area. The slab has
a thermal conductivity of 0.14 W/m-K. The system is operat-
ing at steady-state conditions. What are the rates of change of
entropy of (a) the higher temperature reservoir, (b) the lower
temperature reservoir, (c) the slab, and (d) the whole universe
as a result of this process? (e) Does your answer satisfy the
Second Law of Thermodynamics?

(a) If the thermal energy reservoirs in Problem 1.6 are suddenly
replaced with adiabatic walls, determine the final equilibrium
temperature of the slab. (b) What is the entropy change for the
slab for this process? (c) Does your answer satisfy the Second
Law of Thermodynamics in this instance? Explain. The density
of the slab is 26 Ib/ft3 and the specific heat is 0.65 Btu/lb-°F.
[(b): 30.81 J/K].

A copper sphere 2.5 cm in diameter has a uniform temperature
of 40°C. The sphere is suspended in a slow-moving air stream
at 0°C. The air stream produces a convection heat transfer co-
efficient of 15 W/m?K. Radiation can be neglected. Since cop-
per is highly conductive, temperature gradients in the sphere
will smooth out rapidly, and its temperature can be taken as
uniform throughout the cooling process (i.e., Bi <« 1). Write
the instantaneous energy balance between the sphere and the
surrounding air. Solve this equation and plot the resulting
temperatures as a function of time between 40°C and 0°C.
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1.9 Determine the total heat transfer in Problem 1.8 as the sphere
cools from 40°C to 0°C. Plot the net entropy increase result-
ing from the cooling process above, AS vs. T (K). [Total heat
transfer = 1123 J.]

1.10 A truncated cone 30 cm high is constructed of Portland ce-
ment. The diameter at the top is 15 ¢cm and at the bottom is
7.5 cm. The lower surface is maintained at 6°C and the top at
40°C. The other surface is insulated. Assume one-dimensional
heat transfer and calculate the rate of heat transfer in watts
from top to bottom. To do this, note that the heat transfer, Q,
must be the same at every cross section. Write Fourier’s law
locally, and integrate it from top to bottom to get a relation
between this unknown Q and the known end temperatures.
[Q =-0.70W.]

1.11 A hot water heater contains 100 kg of water at 75°C in a 20°C
room. Its surface area is 1.3 m?. Select an insulating material,
and specify its thickness, to keep the water from cooling more
than 3°C/h. (Notice that this problem will be greatly simplified
if the temperature drop in the steel casing and the temperature
drop in the convective boundary layers are negligible. Can you
make such assumptions? Explain.)

Vacuum

(T_=100°C) (T_=20°C)

50 W/m?-°C
20 W/m2-°¢

h
h

Figure 1.17 Configuration for
Problem 1.12

1.12 What is the temperature at the left-hand wall shown in Fig. 1.17.
Both walls are thin, very large in extent, highly conducting, and
thermally black. [Tright = 42.5°C.]

1.13 Develop S.I. to English conversion factors for:

e The thermal diffusivity, «
e The heat flux, g
e The density, p



40

Chapter 1: Introduction

Figure 1.18 Configuration for

Problem 1.14

1.14

1.15

1.16

e The Stefan-Boltzmann constant, o
e The view factor, Fi-»

e The molar entropy

e The specific heat per unit mass, ¢

In each case, begin with basic dimension J, m, kg, s, °C, and
check your answers against Appendix B if possible.

q

___\_/-—-)-

O

/» 0°c
100°C 1/-

Three infinite, parallel, black, opaque plates transfer heat by
radiation, as shown in Fig. 1.18. Find T>.

Four infinite, parallel, black, opaque plates transfer heat by
radiation, as shownin Fig. 1.19. Find 1> and T3. [T> = 75.53°C.]

Two large, black, horizontal plates are spaced a distance L
from one another. The top one is warm at a controllable tem-
perature, Ty, and the bottom one is cool at a specified temper-
ature, T.. A gas separates them. The gas is stationary because
it is warm on the top and cold on the bottom. Write the equa-
tion Grad/qcond = fM(N,O® = Tj,/T.), where N is a dimension-
less group containing o, k, L, and T,. Plot N as a function of
O for grad/qconda = 1, 0.8, and 1.2 (and for other values if you
wish).

Now suppose that you have a system in which L = 10 cm,
T, = 100 K, and the gas is hydrogen with an average k of
0.1 W/m-K. Further suppose that you wish to operate in such a
way that the conduction and radiation heat fluxes are identical.
Identify the operating point on your curve and report the value
of T that you must maintain.
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1.17

1.18

1.19

1.20

ma——
Figure 1.19 Configuration for
Problem 1.15

A blackened copper sphere 2 cm in diameter and uniformly at
200°C is introduced into an evacuated black chamber that is
maintained at 20°C.

o Write a differential equation that expresses T(t) for the
sphere, assuming lumped thermal capacity.

¢ Identify a dimensionless group, analogous to the Biot num-
ber, than can be used to tell whether or not the lumped-
capacity solution is valid.

e Show that the lumped-capacity solution is valid.

e Integrate your differential equation and plot the temper-
ature response for the sphere.

As part of a space experiment, a small instrumentation pack-
age is released from a space vehicle. It can be approximated
as a solid aluminum sphere, 4 cm in diameter. The sphere is
initially at 30°C and it contains a pressurized hydrogen com-
ponent that will condense and malfunction at 30 K. If we take
the surrounding space to be at 0 K, how long may we expect the
implementation package to function properly? Is it legitimate
to use the lumped-capacity method in solving the problem?
(Hint: See the directions for Problem 1.17.) [Time = 5.8 weeks.]

Consider heat conduction through the wall as shown in Fig. 1.20.
Calculate g and the temperature of the right-hand side of the
wall.

Throughout Chapter 1 we have assumed that the steady tem-
perature distribution in a plane uniform wall in linear. To
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Figure 1.20 Configuration for
Problem 1.19

1.21

Figure 1.21 Configuration for
Problem 1.22

1.22

1.23

1.24

|- 0.5 m =

R k=12

prove this, simplify the heat diffusion equation to the form
appropriate for steady flow. Then integrate it twice and elimi-
nate the two constants using the known outside temperatures
Tietr and Tright at x = 0 and x = wall thickness, L.

The thermal conductivity in a particular plane wall depends as
follows on the wall temperature: k = A + BT, where A and B
are constants. The temperatures are T; and T> on either side
if the wall, and its thickness is L. Develop an expression for g.
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Find k for the wall shown in Fig. 1.21. Of what might it be
made?

What are T;, T}, and T) in the wall shown in Fig. 1.22? [T; =
16.44°C.]

An aluminum can of beer or soda pop is removed from the
refrigerator and set on the table. If h is 13.5 W/m?K, estimate
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1.25

1.26

1.27

1.28

100°C Ti 25°C T Ty
Figure 1.22 Configuration for Problem 1.23

when the beverage will be at 15°C. Ignore thermal radiation.
State all of your other assumptions.

One large, black wall at 27°C faces another whose surface is
127°C. The gap between the two walls is evacuated. If the sec-
ond wall is 0.1 m thick and has a thermal conductivity of 17.5
W/m-K, what is its temperature on the back side? (Assume
steady state.)

A 1 cm diameter, 1% carbon steel sphere, initially at 200°C, is
cooled by natural convection, with air at 20°C. In this case, h is
not independent of temperature. Instead, h = 3.51(AT°C)!/4
W/mZ2K. Plot Tsphere @s a function of t. Verify the lumped-
capacity assumption.

A 3 cm diameter, black spherical heater is kept at 1100°C. It ra-
diates through an evacuated space to a surrounding spherical
shell of Nichrome V. The shell has a 9 cm inside diameter and
is 0.3 cm thick. It is black on the inside and is held at 25°C on
the outside. Find (a) the temperature of the inner wall of the
shell and (b) the heat transfer, Q. (Treat the shell as a plane
wall.)

The sun radiates 650 W/m? on the surface of a particular lake.
At what rate (in mm/hr) would the lake evaporate away if all of
this energy went to evaporating water? Discuss as many other
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1.29

1.30

1.31

1.32

1.33

1.34

1.35

ways you can think of that this energy can be distributed (htg
for water is 2,257,000 J/kg). Do you suppose much of the 650
W/m? goes to evaporation?

It is proposed to make picnic cups, 0.005 m thick, of a new
plastic for which k = ko (1 + aT?), where T is expressed in °C,
ko = 0.15 W/m-K, and a = 1074 °C~2. We are concerned with
thermal behavior in the extreme case in which T = 100°C in
the cup and 0°C outside. Plot T against position in the cup
wall and find the heat loss, g.

A disc-shaped wafer of diamond 1 Ib is the target of a very high
intensity laser. The disc is 5 mm in diameter and 1 mm deep.
The flat side is pulsed intermittently with 101° W/m? of energy
for one microsecond. It is then cooled by natural convection
from that same side until the next pulse. If h = 10 W/m?K and
Tx=30°C, plot Tgisc as a function of time for pulses that are 50
s apart and 100 s apart. (Note that you must determine the
temperature the disc reaches before it is pulsed each time.)

A 150 W light bulb is roughly a 0.006 m diameter sphere. Its
steady surface temperature in room air is 90°C, and h on the
outside is 7 W/m?K. What fraction of the heat transfer from
the bulb is by radiation directly from the filament through the
glass? (State any additional assumptions.)

How much entropy does the light bulb in Problem 1.31 pro-
duce?

Air at 20°C flows over one side of a thin metal sheet (h = 10.6
W,/mZ2K). Methanol at 87°C flows over the other side (h = 141
W/m?2K). The metal functions as an electrical resistance heater,
releasing 1000 W/m?. Calculate (a) the heater temperature, (b)
the heat transfer from the methanol to the heater, and (c) the
heat transfer from the heater to the air.

A planar black heater is simultaneously cooled by 20°C air (h =
14.6 W/m?K) and by radiation to a parallel black wall at 80°C.
What is the temperature of the heater if it delivers 9000 W/m?2?

An 8 oz. can of beer is taken from a 3°C refrigerator and placed
ina25°Croom. The 6.3 cm diameter by 9 cm high can is placed
on an insulated surface (h = 7.3 W/m?K). How long will it
take to reach 12°C? Ignore thermal radiation, and discuss your
other assumptions.
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1.36

1.37

1.38

1.39

1.40

1.41

1.42

1.43

A resistance heater in the form of a thin sheet runs parallel
with 3 cm slabs of cast iron on either side of an evacuated
cavity. The heater, which releases 8000 W/m?, and the cast
iron are very nearly black. The outside surfaces of the cast
iron slabs are kept at 10°C. Determine the heater temperature
and the inside slab temperatures.

A black wall at 1200°C radiates to the left side of a parallel
slab of type 316 stainless steel, 5 mm thick. The right side of
the slab is to be cooled convectively and is not to exceed 0°C.
Suggest a convective process that will achieve this.

A cooler keeps one side of a 2 cm layer of ice at —10°C. The
other side is exposed to air at 15°C. What is h just on the
edge of melting? Must h be raised or lowered if melting is to
progress?

At what minimum temperature does a black heater deliver its
maximum monochromatic emissive power in the visible range?
Compare your result with Fig. 10.2.

The local heat transfer coefficient during the laminar flow of
fluid over a flat plate of length L is equal to F/x!/2, where F is
a function of fluid properties and the flow velocity. How does
h compare with h(x = L)? (x is the distance from the leading
edge of the plate.)

An object is initially at a temperature above that of its sur-
roundings. We have seen that many kinds of convective pro-
cesses will bring the object into equilibrium with its surround-
ings. Describe the characteristics of a process that will do so
with the least net increase of the entropy of the universe.

A 250°C cylindrical copper billet, 4 cm in diameter and 8 cm
long, is cooled in air at 25°C. The heat transfer coefficient
is 5 W/m2K. Can this be treated as lumped-capacity cooling?
What is the temperature of the billet after 10 minutes?

The sun’s diameter is 1,392,000 km, and it emits energy as if
it were a black body at 5777 K. Determine the rate at which it
emits energy. Compare this with a value from the literature.
What is the sun’s energy output in a year?
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Bibliography of Historical and Advanced Texts

We include no specific references for the ideas introduced in Chapter 1
since these may be found in introductory thermodynamics or physics
books. References 1-6 are some texts which have strongly influenced
the field. The rest are relatively advanced texts or handbooks which go
beyond the present textbook.
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2. Heat conduction concepts,
thermal resistance, and the

overall heat transfer coefficient

It is the fire that warms the cold, the cold that moderates the heat. . .the

general coin that purchases all things. . .

Don Quixote, M. de Cervantes, 1615

2.1 The heat diffusion equation
Objective

We must now develop some ideas that will be needed for the design of
heat exchangers. The most important of these is the notion of an overall
heat transfer coefficient. This is a measure of the general resistance of a
heat exchanger to the flow of heat, and usually it must be built up from
analyses of component resistances. In particular, we must know how to
predict h and how to evaluate the conductive resistance of bodies more
complicated than plane passive walls. The evaluation of h is a matter
that must be deferred to Chapter 6 and 7. For the present, h values must
be considered to be given information in any problem.

The heat conduction component of most heat exchanger problems is
more complex than the simple planar analyses done in Chapter 1. To
do such analyses, we must next derive the heat conduction equation and
learn to solve it.

Consider the general temperature distribution in a three-dimensional
body as depicted in Fig. 2.1. For some reason (heating from one side,
in this case), there is a space- and time-dependent temperature field in
the body. This field T = T(x,y,z,t) or T(¥,t), defines instantaneous
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o <

T = Tix,y,z,t) = T{r,t)

T =T, = constant
{an isotherm)

Figure 2.1 A three-dimensional, transient temperature field.

isothermal surfaces, T1, T», and so on.

We next consider a very important vector associated with the scalar,
T. The vector that has both the magnitude and direction of the maximum
increase of temperature at each point is called the temperature gradient,
VT:

0T 0T =0T
VT:lax+Jay+kaZ (2.1)

Fourier’s law

“Experience”—that is, physical observation—suggests two things about
the heat flow that results from temperature nonuniformities in a body.
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These are:
i _ vT {This says that § and VT are exactly opposite one
71 [VT| another in direction

and

G| o< |VT] This says that the magnitude of the heat flux is di-
q rectly proportional to the temperature gradient

Notice that the heat flux is now written as a quantity that has a specified
direction as well as a specified magnitude. Fourier’s law summarizes this
physical experience succinctly as

G=-kVT (2.2)

which resolves itself into three components:

oT oT oT
dx = _ka ay = _k@ dz = _kE

The coefficient k—the thermal conductivity—also depends on position
and temperature in the most general case:

k=k[7,T(7,t)] (2.3)

Fortunately, most materials (though not all of them) are very nearly ho-
mogeneous. Thus we can usually write k = k(T). The assumption that
we really want to make is that k is constant. Whether or not that is legit-
imate must be determined in each case. As is apparent from Fig. 2.2 and
Fig. 2.3, k almost always varies with temperature. It always rises with T
in gases at low pressures, but it may rise or fall in metals or liquids. The
problem is that of assessing whether or not k is approximately constant
in the range of interest. We could safely take k to be a constant for iron
between 0° and 40°C (see Fig. 2.2), but we would incur error between
—100° and 800°C.

It is easy to prove (Problem 2.1) that if k varies linearly with T, and
if heat transfer is plane and steady, then q = kAT /L, with k evaluated
at the average temperature in the plane. If heat transfer is not planar
or if k is not simply A + BT, it can be much more difficult to specify a
single accurate effective value of k. If AT is not large, one can still make a
reasonably accurate approximation using a constant average value of k.
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Figure 2.3 The temperature dependence of the thermal con-
ductivity of liquids and gases that are either saturated or at 1
atm pressure.
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Figure 2.4 Control volume in a

heat-flow field.

—
n

There is a heat
source, § () w/m?3
distributed through R

Now that we have revisited Fourier’s law in three dimensions, we see
that heat conduction is more complex than it appeared to be in Chapter 1.
We must now write the heat conduction equation in three dimensions.
We begin, as we did in Chapter 1, with the First Law statement, eqn. (1.3):

au

Q= dt (1.3)
This time we apply egn. (1.3) to a three-dimensional control volume, as
shown in Fig. 2.4.! The control volume is a finite region of a conducting
body, which we set aside for analysis. The surface is denoted as S and the
volume and the region as R; both are at rest. An element of the surface,
dsS, is identified and two vectors are shown on dS: one is the unit normal
vector, 7 (with |7i] = 1), and the other is the heat flux vector, § = —kVT,
at that point on the surface.

We also allow the possibility that a volumetric heat release equal to
q(7) W/m? is distributed through the region. This might be the result of
chemical or nuclear reaction, of electrical resistance heating, of external
radiation into the region or of still other causes.

With reference to Fig. 2.4, we can write the heat conducted out of dS,
in watts, as

(=kVT) - (1dS) (2.4)

The heat generated (or consumed) within the region R must be added to
the total heat flow into S to get the overall rate of heat addition to R:

Q- —J (—kVT) - (iidS) + J G dR 2.5)
S R

IFigure 2.4 is the three-dimensional version of the control volume shown in Fig. 1.8.
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The rate of energy increase of the region R is

du oT
_ <p
R

where the derivative of T is in partial form because T is a function of
both ¥ and t.

Finally, we combine Q, as given by eqn. (2.5), and dU/dt, as given by
eqn. (2.6), into eqn. (1.3). After rearranging the terms, we obtain

I kVT -1dS = J [pcaT - q] dR (2.7)
S R ot

To get the left-hand side into a convenient form, we introduce Gauss’s
theorem, which converts a surface integral into a volume integral. Gauss’s
theorem says that if A is any continuous function of position, then

Iﬁ-ﬁdszj V- AdR (2.8)
s R
Therefore, if we identify A with (kVT), eqn. (2.7) reduces to

J (V-kVT—chJrq) dR =0 (2.9)
R ot

Next, since the region R is arbitrary, the integrand must vanish identi-
cally.? We therefore get the heat diffusion equation in three dimensions:

V-kVT +q = pcaa—]; (2.10)

The limitations on this equation are:

e Incompressible medium. (This was implied when no expansion
work term was included.)

e No convection. (The medium cannot undergo any relative motion.
However, it can be a liquid or gas as long as it sits still.)

2Consider [ f(x)dx = 0. If f(x) were, say, sin x, then this could only be true
over intervals of x = 27 or multiples of it. For egn. (2.9) to be true for any range of
integration one might choose, the terms in parentheses must be zero everywhere.
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If the variation of k with T is small, k can be factored out of eqn. (2.10)
to get

q_10T

V2T +
k oot

(2.11)

This is a more complete version of the heat conduction equation [recall
eqn. (1.14)] and « is the thermal diffusivity which was discussed after
eqn. (1.14). The term V2T = V - VT is called the Laplacian. It arises thus
in a Cartesian coordinate system:

-0 -0 ~ 0 0T 0T -0T
VkVT_kVVT_k(la_)(+Ja:)/+ka)C> . (la_)(+JaJ/+kaZ)

or

_9°T  2°T  o°T
-~ 0x2  0y?  0z?

V2T (2.12)

The Laplacian can also be expressed in cylindrical or spherical coor-
dinates. The results are:

e Cylindrical:

10 oT 1 22T 0°T
2p_2+ 0 (L00) Lol o7l
VT =5y (”ar) 2502 T 522 (2.13)
e Spherical:
102(rT) 1 o (. a:r) 1 0°T
o _ 1 9 oy, 1 ol
v T_r 2 ¥2sin0 o0 (SmQBO " r2sin® 0 02 (2.142)

or

1o (1,281") + Lo (sin@aT) + 1T
r2 or or/)  r2sin6 00 00/  ¥2sin® 0 02
(2.14b)

where the coordinates are as described in Fig. 2.5.
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Spherical coordinates

Figure 2.5 Cylindrical and spherical coordinate schemes.
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2.2 Solutions of the heat diffusion equation

We are now in position to calculate the temperature distribution and/or
heat flux in bodies with the help of the heat diffusion equation. In every
case, we first calculate T (7, t). Then, if we want the heat flux as well, we
differentiate T to get g from Fourier’s law.

The heat diffusion equation is a partial differential equation (p.d.e.)
and the task of solving it may seem difficult, but we can actually do a
lot with fairly elementary mathematical tools. For one thing, in one-
dimensional steady-state situations the heat diffusion equation becomes
an ordinary differential equation (o.d.e.); for another, the equation is lin-
ear and therefore not too formidable, in any case. Our procedure can be
laid out, step by step, with the help of the following example.

Example 2.1 Basic Method

A large, thin concrete slab of thickness L is “setting.” Setting is an
exothermic process that releases g W/m3. The outside surfaces are
kept at the ambient temperature, so Ty, = T. What is the maximum
internal temperature?

SOLUTION.

Step 1. Pick the coordinate scheme that best fits the problem and iden-
tify the independent variables that determine T. In the example,
T will probably vary only along the thin dimension, which we will
call the x-direction. (We should want to know that the edges are
insulated and that L was much smaller than the width or height.
If they are, this assumption should be quite good.) Since the in-
terior temperature will reach its maximum value when the pro-
cess becomes steady, we write T = T (x only).

Step 2. Write the appropriate d.e., starting with one of the forms of
eqn. (2.11).

0°T 9°T  0°T 4 _

10T
2t 32 v 52T xor
0x oy 0z k x ot
—_— —
=0, since = 0, since
T+ T(yorz) steady

Therefore, since T = T(x only), the equation reduces to the
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ordinary d.e.

a’T 4
dx?  k

Step 3. Obtain the general solution of the d.e. (This is usually the

easiest step.) We simply integrate the d.e. twice and get

R
T = 2kX +Ci1x +

Step 4. Write the “side conditions” on the d.e.—the initial and bound-

ary conditions. This is always the hardest part for the beginning
students; it is the part that most seriously tests their physical
or “practical” understanding of problems.

Normally, we have to make two specifications of temperature
on each position coordinate and one on the time coordinate to
get rid of the constants of integration in the general solution.
(These matters are discussed at greater length in Chapter 4.)

In this case there are two boundary conditions:
T(x=0)=T, and T(x=L)=Ty

Very Important Warning: Never, never introduce inaccessible
information in a boundary or initial condition. Always stop and
ask yourself, “Would I have access to a numerical value of the
temperature (or other data) that I specify at a given position or
time?” If the answer is no, then your result will be useless.

Step 5. Substitute the general solution in the boundary and initial con-

ditions and solve for the constants. This process gets very com-
plicated in the transient and multidimensional cases. Fourier
series methods are typically needed to solve the problem. How-
ever, the steady one-dimensional problems are usually easy. In
the example, by evaluating at x = 0 and x = L, we get:

Tw=-0+0+(Co SO Co =Ty

__ar’ _alL

Ty = ok +Ci1L+ SO C = ok
—

=Ty
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Dimensionless 0.15 |—
temperature, _ T¢_ -Tw ~ 1
« 2 - 8
qL"/k
TTw 0.10 —
aL?/k
!
0.05 — Eqn (2.19)
0 -
0 1.0
0.5

Dimensionless postition, x/L

Figure 2.6 Temperature distribution in the setting concrete
slab Example 2.1.

Step 6. Put the calculated constants back in the general solution to get
the particular solution to the problem. In the example problem
we obtain:

__ 4.2 4
T = ka +2ka+Tw

This should be put in neat dimensionless form:
T-Ty 1 X_(X)2
qr2/k = 2 [L L (2.15)

Step 7. Play with the solution—Ilook it over—see what it has to tell you.
Make any checks you can think of to be sure it is correct. In this
case we plot eqgn. (2.15) in Fig. 2.6. The resulting temperature
distribution is parabolic and, as we would expect, symmetrical.
It satisfies the boundary conditions at the wall and maximizes
in the center. By nondimensionalizing the result, we have suc-
ceeded in representing all situations with a simple curve. That
is highly desirable when the calculations are not simple, as they
are here. (Notice that T actually depends on five different things,
yet the solution is a single curve on a two-coordinate graph.)
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Finally, we check to see if the heat flux at the wall is correct:

oT _ |4 _‘LL] _ 4L
X_o‘k[kx 2k Jxeo 2

= —ki
Awall dx
Thus, half of the total energy generated in the slab comes out
of the front side, as we would expect. The solution appears to
be correct.

Step 8. If the temperature field is now correctly established, you can,
if you wish, calculate the heat flux at any point in the body by
substituting T (v, t) back into Fourier’s law. We did this already,
in Step 7, to check our solution. |

We shall run through additional examples in this section and the fol-

lowing one. In the process, we shall develop some important results for
future use.

Example 2.2 The Simple Slab

A slab shown in Fig. 2.7 is at a steady state with dissimilar temper-
atures on either side and no internal heat generation. We want the
temperature distribution and the heat flux through it.

SOLUTION. These can be found quickly by following the steps set
down in Example 2.1:

A

7
T — -
/ T=T1".rl LR
L
T
/ " -
A
S S S S x o} L X
(o] L
Problem Solution

Figure 2.7 Heat conduction in a slab (Example 2.2).
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Step 1. T = T(x) for steady x-direction heat flow

2
Step 2. % = 0, the steady 1-D heat equation with no g
Step 3. T = C1x + (o is the general solution of that equation

Step4. T(x =0) =T, and T(x = L) = T» are the b.c.s

T, - T

Step 5. 1 =0+ C2,s0Co =Ty;and To = C1L + Co, s0 Cy = T

T, - T T-T
2 lx'o 1 X

I %o T

Step6. T =T +

Step 7. We note that the solution satisfies the boundary conditions
and that the temperature profile is linear.
T T, - T
ATl (g, BT

St@p8.q=—ka——a I

AT
so that q= kT |

This result, which is the simplest heat conduction solution, calls to
mind Ohm’s law. Thus, if we rearrange it:

AT - E
Q= m is like I= E
where L/kA assumes the role of a thermal resistance, to which we give
the symbol R;. R; has the dimensions of (K/W). Figure 2.8 shows how we
can represent heat flow through the slab with a diagram that is perfectly
analogous to an electric circuit.

2.3 Thermal resistance and the electrical analogy
Fourier’s, Fick’s, and Ohm’s laws

Fourier’s law has several extremely important analogies in other kinds of
physical behavior, of which the electrical analogy is only one. These anal-
ogous processes provide us with a good deal of guidance in the solution
of heat transfer problems And, conversely, heat conduction analyses can
often be adapted to describe those processes.
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Figure 2.8 Ohm’s law analogy to conduction through a slab.

Let us first consider Ohm’s law in three dimensions:

T

1 =J=-yVVv (2.16)

flux of electrical charge =

I amperes is the vectorial electrical current, A is an area normal to the
current vector, J is the flux of current or current density, y is the electrical
conductivity in cm/ohm-cm?, and V is the voltage.

To apply egn. (2.16) to a one-dimensional current flow, as pictured in
Fig. 2.9, we write eqn. (2.16) as
av. AV

=Y (2.17)

J=Vax TV

but AV is the applied voltage, E, and the resistance of the wire is R =
L/yA. Then, since I = J A, eqn. (2.17) becomes

I== 2.18
R ( )
which is the familiar, but restrictive, one-dimensional statement of Ohm’s
law.
Fick’s law is another analogous relation. It states that during mass
diffusion, the flux, ji, of a dilute component, 1, into a second fluid, 2, is
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B ] ]
aS

Figure 2.9 The one-dimensional flow of 1|I
current. AV=E

proportional to the gradient of its mass concentration, ;. Thus
Jj1=-pD12Vm; (2.19)

where the constant D> is the binary diffusion coefficient.

Example 2.3

Air fills a thin tube 1 m in length. There is a small water leak at one
end where the water vapor concentration builds to a mass fraction of
0.01. A desiccator maintains the concentration at zero on the other
side. What is the steady flux of water from one side to the other if
D1 is 2.84 x 107> m?/s and p = 1.18 kg/m3?

SOLUTION.

- ) .
ke (2.84 X 105HSI> (O-Ol kg H>O/kg m1xture>

I =1.18—
Jwater vapor m3 1m

=335% 107 &
me--S
m

Contact resistance

One place in which the usefulness of the electrical resistance analogy be-
comes immediately apparent is at the interface of two conducting media.
No two solid surfaces will ever form perfect thermal contact when they
are pressed together. Since some roughness is always present, a typical
plane of contact will always include tiny air gaps as shown in Fig. 2.10
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Figure 2.10 Heat transfer through the contact plane between
two solid surfaces.

(which is drawn with a highly exaggerated vertical scale). Heat transfer
follows two paths through such an interface. Conduction through points
of solid-to-solid contact is very effective, but conduction through the gas-
filled interstices, which have low thermal conductivity, can be very poor.
Thermal radiation across the gaps is also inefficient.

We treat the contact surface by placing an interfacial conductance, h.,
in series with the conducting materials on either side. The coefficient h,
is similar to a heat transfer coefficient and has the same units, W/m2K. If
AT is the temperature difference across an interface of area A, then Q =
Ah AT. Tt follows that Q = AT/R; for a contact resistance R; = 1/(h A)
in K/W.

The interfacial conductance, h., depends on the following factors:

e The surface finish and cleanliness of the contacting solids.
e The materials that are in contact.

e The pressure with which the surfaces are forced together. This may
vary over the surface, for example, in the vicinity of a bolt.

e The substance (or lack of it) in the interstitial spaces. Conductive
shims or fillers can raise the interfacial conductance.

e The temperature at the contact plane.

The influence of contact pressure is usually amodest one up to around
10 atm in most metals. Beyond that, increasing plastic deformation of
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Table 2.1 Some typical interfacial conductances for normal
surface finishes and moderate contact pressures (about 1 to 10
atm). Air gaps not evacuated unless so indicated.

Situation he. (W/m?K)
Iron/aluminum (70 atm pressure) 45,000
Copper/copper 10,000 — 25,000
Aluminum/aluminum 2,200 -12,000
Graphite/metals 3,000 — 6,000
Ceramic/metals 1,500 - 8,500
Stainless steel/stainless steel 2,000 - 3,700
Ceramic/ceramic 500 - 3,000
Stainless steel/stainless steel 200 - 1,100
(evacuated interstices)
Aluminum/aluminum (low pressure 100 — 400

and evacuated interstices)

the local contact points causes h. to increase more dramatically at high
pressure. Table 2.1 gives typical values of contact resistances which bear
out most of the preceding points. These values have been adapted from
[2.1, Chpt. 3] and [2.2]. Theories of contact resistance are discussed in
[2.3] and [2.4].

Example 2.4

Heat flows through two stainless steel slabs (k = 18 W/m-K) that are
pressed together. The slab area is A = 1 m?. How thick must the
slabs be for contact resistance to be negligible?

SOoLUTION. With reference to Fig. 2.11, the total or equivalent resis-
tance is found by adding these resistances, which are in series:

feav = pA " hoA kA A\18  h. 18
Since h. is about 3,000 W/m?K,

Z—L must be > = 0.00033

18 3000
Thus, L must be large compared to 18(0.00033)/2 = 0.003 m if contact
resistance is to be ignored. If L = 3 cm, the error is about 10%. |
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T

—»ILILwa

Figure 2.11 Conduction through two

Configuration Thermal circuit unit-area slabs with a contact resistance.

Resistances for cylinders and for convection

As we continue developing our method of solving one-dimensional heat
conduction problems, we find that other avenues of heat flow may also be
expressed as thermal resistances, and introduced into the solutions that
we obtain. We also find that, once the heat conduction equation has been
solved, the results themselves may be used as new thermal resistances.

Example 2.5 Radial Heat Conduction in a Tube

Find the temperature distribution and the heat flux for the long hollow
cylinder shown in Fig. 2.12.

SOLUTION.

Stepl. T=T(r)

Step 2.
10 ( 8T) 1 22T 02°T g 10T
——lr= )+ S=—+= + - -
ror \' or r20¢p2  0z2 k o« ot
—_— >
=0, since T # T(¢p,z) =0 =0, since steady

T
Step 3. Integrate once: T?Tr = (1; integrate again: T = C;Inv + (&

Step4. T(r=7ry)) =Tiand T(r =7,) =T,
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Configuration Temperature profile

Figure 2.12 Heat transfer through a cylinder with a fixed wall
temperature (Example 2.5).

Step 5.
o Ti=To _ AT
Li=Gln+ G 5 " nGi/rg) —  InGre/m)
To = CiIn7y + C2 Co=T; + m(ﬁT/V)lnri
ol/ti
AT
Step6. T=T; — m(lﬂr —In7;) or

T-T; In(r/r)
To-Ti In(re/7y)

(2.20)

Step 7. The solution is plotted in Fig. 2.12. We see that the temper-
ature profile is logarithmic and that it satisfies both boundary
conditions. Furthermore, it is instructive to see what happens
when the wall of the cylinder is very thin, or when r; /7, is close
to 1. In this case:

In(r/r;) = r_ 1= Yo
i (£
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and
Yo —71i

In(ry /1) = ——
1

Thus egn. (2.20) becomes

T—Ti _ Y —7i
To — T; _7’0_7’1'

which is a simple linear profile. This is the same solution that
we would get in a plane wall.

Step 8. At any station, 7:

oT kAT 1

dradial = _kar = +m;

So the heat flux falls off inversely with radius. That is reason-
able, since the same heat flow must pass through an increasingly
large surface as the radius increases. Let us see if this is the case
for a cylinder of length I:

2TTKIAT
W)=Q2mrl)g=——— = f(r 2.21
Q (W) = ( )4 n(ry/77) fr) (2.21)
Finally, we again recognize Ohm’s law in this result and write
the thermal resistance for a cylinder:

In(ry/7i) (K
R = =51k ( )

W (2.22)

This can be compared with the resistance of a plane wall:

L K
Revan = 34 (w)

Both resistances are inversely proportional to k, but each re-
flects a different geometry. |

In the preceding examples, the boundary conditions were all the same
—a temperature specified at an outer edge. Next let us suppose that the
temperature is specified in the environment away from a body, with a
heat transfer coefficient between the environment and the body.
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,i Bi=1.0
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Bi=0.1
0
0 1 2
Configuration r/r;
Solution

Figure 2.13 Heat transfer through a cylinder with a convective
boundary condition (Example 2.6).

Example 2.6 A Convective Boundary Condition

A convective heat transfer coefficient around the outside of the cylin-
der in Example 2.5 provides thermal resistance between the cylinder
and an environment at T = T, as shown in Fig. 2.13. Find the tem-
perature distribution and heat flux in this case.

SOLUTION.
Step 1 through 3. These are the same as in Example 2.5.

Step 4. The first boundary condition is T(» = r;) = T;. The second
boundary condition must be expressed as an energy balance at
the outer wall (recall Section 1.3).

Aconvection = conduction
at the wall

or

E(T - Too)y:yo = _k al
or =7,

Step 5. From the first boundary condition we obtain T; = CyIn7; +
C»>. It is easy to make mistakes when we substitute the general
solution into the second boundary condition, so we will do it in



§2.3 Thermal resistance and the electrical analogy

71

detail:

E[(Cl Inr + Cp) — Tm]

r=ro

0
= -k [E(CI lnr+C2)] (2.23)

r=7p

A common error is to substitute T = T, on the lefthand side
instead of substituting the entire general solution. That will do
no good, because T, is not an accessible piece of information.
Equation (2.23) reduces to:

kCy

o

When we combine this with the result of the first boundary con-
dition to eliminate Co:

Ti_Too TOO_Tl

1= " k/(hry) + In(re/17) T 1/Bi+ In(r,/7;)

Then

To — T;

Co=Ti= 75 +In(ro/77)

Inv;

Step 6.

T = 1/Bi+ n(rg /1y /M) + Ti

This can be rearranged in fully dimensionless form:

T-T; In(r/7;)

To —T; 1/Bi+In(r,/7i) (2.24)

Step 7. Let us fix a value of 7,/r;—say, 2—and plot eqn. (2.24) for
several values of the Biot number. The results are included
in Fig. 2.13. Some very important things show up in this plot.
When Bi > 1, the solution reduces to the solution given in Ex-
ample 2.5. It is as though the convective resistance to heat flow
were not there. That is exactly what we anticipated in Section 1.3
for large Bi. When Bi < 1, the opposite is true: (T —T;)/(Te —T;)
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Figure 2.14 Thermal circuit with two A

resistances.

1 ol
AT - Rtcond = 21K

A~

Rtcony = 1/2Mron

remains on the order of Bi, and internal conduction can be ne-
glected. How big is big and how small is small? We do not
really have to specify exactly. But in this case Bi < 0.1 signals
constancy of temperature inside the cylinder with about +3%.
Bi > 20 means that we can neglect convection with about 5%
error.

oT T, -Tw 1

or  1/Bi+In(r,/ri) v

This can be written in terms of Q (W) = gragial (2777 1) for a cylin-
der of length

Step 8. qradial = —k

Q _ Tl - Too _ Tl - Too
1 In(vo/7i) ~ Rty + Regyng
— + con
h2mr,l 21kl

(2.25)

Equation (2.25) is once again analogous to Ohm’s law. But this time
the denominator is the sum of two thermal resistances, as would be
the case in a series circuit. We accordingly present the analogous
electrical circuit in Fig. 2.14.

The presence of convection on the outside surface of the cylinder
causes a new thermal resistance of the form

1

Ry = — 2.26
tCOIlV hA ( )

where A is the surface area over which convection occurs. |

Example 2.7 Critical Radius of Insulation

An interesting consequence of the preceding result can be brought out
with a specific example. Suppose that we insulate a 0.5 cm O.D. copper
steam line with 85% magnesia to prevent the steam from condensing
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Rtcondensation ~ Nedligible
AA
thu = negligible
AT=
n ro/ri
Rtcond = 27k
mag
AAN Figure 2.15 Thermal circuit for an
Rtcony = 1/2Mroh insulated tube.

too rapidly. The steam is under pressure and stays at 150°C. The
copper is thin and highly conductive—obviously a tiny resistance in
series with the convective and insulation resistances, as we see in
Fig. 2.15. The condensation of steam inside the tube also offers very
little resistance.3 But on the outside, a heat transfer coefficient of h
= 20 W/m?K offers fairly high resistance. It turns out that insulation
can actually improve heat transfer in this case.
The two significant resistances, for a cylinder of unit length (I =
1 m), are
In(ro /7))  In(vo /i)
Riwa = “5mi = 2m0.070) W
1 1

R e 211(20) 7, /

Figure 2.16 is a plot of these resistances and their sum. A very inter-
esting thing occurs here. R, falls off rapidly when 7, is increased,
because the outside area is increasing. Accordingly, the total resis-
tance passes through a minimum in this case. Will it always do so?
To find out, we differentiate eqn. (2.25), again setting [ = 1 m:

dQ (Tl —Tw) 1 1
= 2 (‘ o T ) =
o ( L, lnm/n)) 2mrgh - 2TTkY,

21Tt h 21Tk

When we solve this for the value of ¥, = 7t at which Q is maximum
and the total resistance is minimum, we obtain

_ Ercrit
k
In the present example, adding insulation will increase heat loss in-

Bi=1 (2.27)

3Condensation heat transfer is discussed in Chapter 8. It turns out that h is generally
enormous during condensation so that Rt jensation 1S Y.
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4 — lerit = 1.48 1

R +R
\ tcond tconvL
~ Rt
S conv
-~ -
-~
\\\ _ -
-~ ”
ot Lol
- -—— ——

Thermal resistance, R; (K/W)
N

1.0 1.5 2.0 2.5

2.32
Radius ratio, ry/f;

Figure 2.16 The critical radius of insulation (Example 2.7),
written for a cylinder of unit length (I = 1 m).

stead of reducing it, until ¥¢it = k/h = 0.0037 m or ¥eit/7; = 1.48.
Indeed, insulation will not even start to do any good until v, /¥; = 2.32
or v, = 0.0058 m. We call v the critical radius of insulation. |

There is an interesting catch here. For most cylinders, ¥t < ¥; and
the critical radius idiosyncrasy is of no concern. If our steam line had a 1
cm outside diameter, the critical radius difficulty would not have arisen.
When cooling smaller diameter cylinders, such as electrical wiring, the
critical radius must be considered, but one need not worry about it in
the design of most large process equipment.

Resistance for thermal radiation
We saw in Chapter 1 that the net radiation exchanged by two objects is

given by eqn. (1.34):

Qnet = A1 T1-2 O'(Tf - T;) (1.34)

When T; and T» are close, we can approximate this equation using a
radiation heat transfer coefficient, hyyq. Specifically, suppose that the
temperature difference, AT = T; — T», is small compared to the mean
temperature, T), = (T1 + T>)/2. Then we can make the following expan-
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sion and approximation:

Qnet = A1F1-2 O'<Tf - Tf)
= A1 Fi2 0 (T + TH)(TF - T5)
=A1fi20 (T{+T5) (Ti+Tp) (T - T2)

=2T2 + (AT)2/2 =2Tp =AT

= Ay (40T3, Fi12) AT (2.28)
_Y—J
=Nrad

where the last step assumes that (AT)?/2 < 2T2, or (AT/T)?/4 < 1.
Thus, we have identified the radiation heat transfer coefficient

Qnet = AlhradAT >
for (AT/Tm) /4 <1 (2.29)
Nrad = 40 Ty F1-2

This leads us immediately to the introduction of a radiation thermal re-
sistance, analogous to that for convection:

1

Riy=-——
frad A 1 hrad

(2.30)

For the special case of a small object (1) in a much larger environment
(2), the transfer factor is given by egn. (1.35) as F1-» = €1, so that

Niad = 40T €1 (2.31)

If the small object is black, its emittance is €1 = 1 and haq is maximized.
For a black object radiating near room temperature, say T, = 300 K,

Nrag = 4(5.67 x 1078)(300)3 = 6 W/m2K

This value is of approximately the same size as h for natural convection
into a gas at such temperatures. Thus, the heat transfer by thermal radi-
ation and natural convection into gases are similar. Both effects must be
taken into account. In forced convection in gases, on the other hand, h
might well be larger than h;,q by an order of magnitude or more, so that
thermal radiation can be neglected.
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Example 2.8

An electrical resistor dissipating 0.1 W has been mounted well away
from other components in an electronical cabinet. It is cylindrical
with a 3.6 mm O.D. and a length of 10 mm. If the air in the cabinet
is at 35°C and at rest, and the resistor has h = 13 W/m?2K for natural
convection and € = 0.9, what is the resistor’s temperature? Assume
that the electrical leads are configured so that little heat is conducted
into them.

SOLUTION. The resistor may be treated as a small object in a large
isothermal environment. To compute h;aq, let us estimate the resis-
tor’s temperature as 50°C. Then

Tm = (35 +50)/2 = 43°C =316 K
SO
Niad = 40T e = 4(5.67 x 1078)(316)3(0.9) = 6.44 W/m?K

Heat is lost by natural convection and thermal radiation acting in
parallel. To find the equivalent thermal resistance, we combine the
two parallel resistances as follows:
1 1 1
= +
Rtequiv Rtrad thonv

= Alpag + Al = A(hyag + )

Thus,

1

R v — T =
tequl\ A(hrad + h)

A calculation shows A = 133 mm? = 1.33 x 10~* m? for the resistor
surface. Thus, the equivalent thermal resistance is

1

Ry . = = 8K
teau = (133 % 10 4)(13 + 6.44) _ 5008 Al
Since
B Tresistor — Tair
Q Rtequiv
We find

Tresistor = Tair + Q * Regyy = 35 + (0.1)(386.8) = 73.68 °C
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Tresistor

tconv= F]A
—> QCOI’]V
Tresistor Tair
o—— +—o0
1
Rt
rad hradA
L A \N— Figure 2.17 An electrical resistor cooled

by convection and radiation.

We guessed a resistor temperature of 50°C in finding h;aq. Re-
computing with this higher temperature, we have T, = 327 K and
Nraa = 7.17 W/m?K. If we repeat the rest of the calculation, we get a
new value Tresistor = 72.3°C. Further iteration is not needed.

Since the use of h;,q is an approximation, we should check its
applicability:

2 . 2
1 (E) _1 (M) = 0.00325 < 1
Tm

4 4 327
In this case, the approximation is a very good one. |
Example 2.9

Suppose that power to the resistor in Example 2.8 is turned off. How
long does it take to cool? The resistor has k = 10 W/m-K, p =
2000 kg/m?3, and ¢, = 700 J/kg-K.

SOLUTION. The lumped capacity model, eqn. (1.22), may be appli-
cable. To find out, we check the resistor’s Biot number, noting that
the parallel convection and radiation processes have an effective heat
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transfer coefficient hegt = 1 + hrag = 18.44 W/m?2K. Then,

Bi = Netf?o _ (18.44)(0.0036/2) 0.0033 < 1
k 10
so eqgn. (1.22) can be used to describe the cooling process. The time
constant is
_ pcpV  (2000)(700)7(0.010) (0.0036)2 /4
" RetA (18.44)(1.33 x 1074)

From eqn. (1.22) with Ty = 72.3°C
Tresistor = 35.0 + (72.3 — 35.())e_t/58-1 °C

T =58.1s

Ninety-five percent of the total temperature drop has occured when
t=3T=174s. |

2.4 Overall heat transfer coefficient, U
Definition
We often want to transfer heat through composite resistances, such as

the series of resistances shown in Fig. 2.18. It is very convenient to have
a number, U, that works like this*:

Q = UAAT (2.32)

This number, called the overall heat transfer coefficient, is defined largely
by the system, and in many cases it proves to be insensitive to the oper-
ating conditions of the system.

In Example 2.6, for instance, two resistances are in series. We can use
the value Q given by eqn. (2.25) to get

_ QW) B 1 ,
h k
We have based U on the outside area, A, = 27T7,l, in this case. We might

instead have based it on inside area, A; = 27r7;l, and obtained

1
- 2.34
u i +?’iln(1’o/1’i) (2.34)

hr, k

4This U must not be confused with internal energy. The two terms should always
be distinct in context.
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Figure 2.18 A thermal circuit with many
- 'll resistances in series. The equivalent
AT resistance is Ry, = 2.i Ri.

It is therefore important to remember which area an overall heat trans-
fer coefficient is based on. It is particularly important that A and U be
consistent when we write Q = UAAT.

In general, for any composite resistance, the overall heat transfer co-
efficient may be obtained from the equivalent resistance. The equivalent
resistance is calculated taking account of series and parallel resistors,
as in Examples 2.4 and 2.8. Then, because Q = AT/R¢,,, = UAAT, it
follows that UA = 1/R¢q, -

Example 2.10

Estimate the overall heat transfer coefficient for the tea kettle shown
in Fig. 2.19. Note that the flame convects heat to the thin aluminum.
The heat is then conducted through the aluminum and finally con-
vected by boiling into the water.

SOLUTION. We need not worry about deciding which area to base A
on because the area normal to the heat flux vector does not change.
We simply write the heat flow
Q = AT _ Thame — Tboiling water
SR 1 L 1
_— t —— + =
hA  kalA  hpA

and apply the definition of U

_Q 1

U=AaT~ T L 1
=4 — + =
h kAl I’lb

Let us see what typical numbers would look like in this example: h
might be around 200 W/m?K; L/ka; might be 0.001 m/(160 W/m-K)
or 1/160,000 W/m?2K; and hy, is quite large— perhaps about 5000
W/m?K. Thus:
1
1 N 1 N 1
200 160,000 5000

U ~

=192.1 W/m?K [ ]
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Physical configuration
Teakettie

Thermal circuit

{ |I
o h
AT

Figure 2.19 Heat transfer through the bottom of a tea kettle.

It is clear that the first resistance is dominant, as is shown in Fig. 2.19.
Notice that in such cases

UA — 1/Rtyian (2.35)

where A is any area (inside or outside) in the thermal circuit.

Experiment 2.1

Boil water in a paper cup over an open flame and explain why you can
do so. [Recall egn. (2.35) and see Problem 2.12.]

Example 2.11

A wall consists of alternating layers of pine and sawdust, as shown
in Fig. 2.20). The sheathes on the outside have negligible resistance
and h is known on the sides. Compute Q and U for the wall.

SOLUTION. So long as the wood and the sawdust do not differ dramat-
ically from one another in thermal conductivity, we can approximate
the wall as a parallel resistance circuit, as shown in the figure.” The

>For this approximation to be exact, the resistances must be equal. If they differ
radically, the problem must be treated as two-dimensional.
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Sawdust
T ) ==
L T T
. ., . . . (T )
" RIS r
] e
A | = =
— T —
T ¥
e e A
. s
— ¥
Pine
AT=T_-T
- | —— R r
Configuration Thermal circuit

Figure 2.20 Heat transfer through a composite wall.

equivalent thermal resistance of the circuit is

1
Rtequiv = thonv + 1 1 + thonv
+
(Rtpine Rtsawdust )
Thus
Q _ AT _ T001 - Too‘r
Rtequiv i + 1 + L
hA kpA, . ksAs\  hA
L L
and
__Q _ 1
U= AAT 9 1 .
=+
h kpAp ksAs
LA LA

The approach illustrated in this example is very widely used in calcu-
lating U values for the walls and roofs houses and buildings. The thermal
resistances of each structural element — insulation, studs, siding, doors,
windows, etc. — are combined to calculate U or Ry, Which is then used
together with weather data to estimate heating and cooling loads [2.5].
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Table 2.2 Typical ranges or magnitudes of U

Heat Exchange Configuration U (W/m?2K)

Walls and roofs dwellings with a 24 km/h
outdoor wind:

¢ Insulated roofs 0.3-2

¢ Finished masonry walls 0.5-6

e Frame walls 0.3-5

e Uninsulated roofs 1.2-4
Single-pane windows ~ 6t
Air to heavy tars and oils As low as 45
Air to low-viscosity liquids As high as 600
Air to various gases 60-550
Steam or water to oil 60-340
Liquids in coils immersed in liquids 110-2,000
Feedwater heaters 110-8,500
Air condensers 350-780
Steam-jacketed, agitated vessels 500-1,900
Shell-and-tube ammonia condensers 800-1,400
Steam condensers with 25°C water 1,500-5,000
Condensing steam to high-pressure 1,500-10,000

boiling water

T Main heat loss is by infiltration.

Typical values of U

In a fairly general use of the word, a heat exchanger is anything that
lies between two fluid masses at different temperatures. In this sense a
heat exchanger might be designed either to impede or to enhance heat
exchange. Consider some typical values of U shown in Table 2.2, which
were assembled from a variety of technical sources. If the exchanger
is intended to improve heat exchange, U will generally be much greater
than 40 W/m?2K. If it is intended to impede heat flow, it will be less than
10 W/m?K—anywhere down to almost perfect insulation. You should
have some numerical concept of relative values of U, so we recommend
that you scrutinize the numbers in Table 2.2. Some things worth bearing
in mind are:

o The fluids with low thermal conductivities, such as tars, oils, or any
of the gases, usually yield low values of h. When such fluid flows
on one side of an exchanger, U will generally be pulled down.
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e Condensing and boiling are very effective heat transfer processes.
They greatly improve U but they cannot override one very small
value of h on the other side of the exchange. (Recall Example 2.10.)

In fact:
¢ For a high U, all resistances in the exchanger must be low.

o The highly conducting liquids, such as water and liquid metals, give
high values of h and U.

Fouling resistance

Figure 2.21 shows one of the simplest forms of a heat exchanger—a pipe.
The inside is new and clean on the left, but on the right it has built up a
layer of scale. In conventional freshwater preheaters, for example, this
scale is typically MgSO4 (magnesium sulfate) or CaSO4 (calcium sulfate)
which precipitates onto the pipe wall after a time. To account for the re-
sistance offered by these buildups, we must include an additional, highly
empirical resistance when we calculate U. Thus, for the pipe shown in
Fig. 2.21,

1
U‘older ipe =
basedpog A 1 N viIn(ro/ry)  riln(ry/vi) ti

h; Kinsul kpipe Yoho

Pipe

Insutation
Scale

To

New pipe Older pipe
(after some use)

Figure 2.21 The fouling of a pipe.
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Table 2.3 Some typical fouling resistances for a unit area.

Fluid and Situation

Fouling Resistance
Ry (m2K/W)

Distilled water

Seawater

Treated boiler feedwater
Clean river or lake water

0.0001
0.0001 - 0.0004
0.0001 - 0.0002
0.0002 - 0.0006

About the worst waters used in heat < 0.0020
exchangers

No. 6 fuel oil 0.0001
Transformer or lubricating oil 0.0002
Most industrial liquids 0.0002
Most refinery liquids 0.0002 — 0.0009
Steam, non-oil-bearing 0.0001
Steam, oil-bearing (e.g., turbine 0.0003

exhaust)
Most stable gases
Flue gases
Refrigerant vapors (oil-bearing)

0.0002 - 0.0004
0.0010 - 0.0020
0.0040

where Ry is a fouling resistance for a unit area of pipe (in m2K/W). And

clearly

1 1

Rr= 2.36
f Uold ( )

Unew

Some typical values of Ry are given in Table 2.3. These values have
been adapted from [2.6] and [2.7]. Notice that fouling has the effect of
adding a resistance in series on the order of 104 m2K/W. It is rather like
another heat transfer coefficient, Ef, on the order of 10,000 W/m?K in
series with the other resistances in the exchanger.

The tabulated values of Ry are given to only one significant figure be-
cause they are very approximate. Clearly, exact values would have to be
referred to specific heat exchanger configurations, to particular fluids, to
fluid velocities, to operating temperatures, and to age [2.8, 2.9]. The re-
sistance generally drops with increased velocity and increases with tem-
perature and age. The values given in the table are based on reasonable



§2.4 Overall heat transfer coefficient, U

maintenance and the use of conventional shell-and-tube heat exchangers.
With misuse, a given heat exchanger can yield much higher values of Ry.

Notice too, that if U < 1,000 W/m2K, fouling will be unimportant
because it will introduce a negligibly small resistance in series. Thus,
in a water-to-water heat exchanger, for which U is on the order of 2000
W/m?K, fouling might be important; but in a finned-tube heat exchanger
with hot gas in the tubes and cold gas passing across the fins on them, U
might be around 200 W/m?K, and fouling will be usually be insignificant.

Example 2.12

You have unpainted aluminum siding on your house and the engineer
has based a heat loss calculation on U = 5 W/m?2K. You discover that
air pollution levels are such that Ry is 0.0005 m2K/W on the siding.
Should the engineer redesign the siding?

SOLUTION. From eqn. (2.36) we get

1 1

Ucorrected Uuncorrected

+ Ry = 0.2000 + 0.0005 m*K/W
Therefore, fouling is entirely irrelevant to domestic heat loads. |

Example 2.13

Since the engineer did not fail you in the preceding calculation, you
entrust him with the installation of a heat exchanger at your plant.
He installs a water-cooled steam condenser with U = 4000 W/m?K.
You discover that he used water-side fouling resistance for distilled
water but that the water flowing in the tubes is not clear at all. How
did he do this time?

SOLUTION. Equation (2.36) and Table 2.3 give

1 1
Ucorrected 4000
= 0.00085 to 0.00225 m°K/W

+ (0.0006 to 0.0020)

Thus, U is reduced from 4,000 to between 444 and 1,176 W/m?2K.
Fouling is crucial in this case, and the engineer was in serious error.
|
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2.5

Summary

Four things have been done in this chapter:

The heat diffusion equation has been established. A method has
been established for solving it in simple problems, and some im-
portant results have been presented. (We say much more about
solving the heat diffusion equation in Part II of this book.)

We have explored the electric analogy to steady heat flow, paying
special attention to the concept of thermal resistance. We exploited
the analogy to solve heat transfer problems in the same way we
solve electrical circuit problems.

The overall heat transfer coefficient has been defined, and we have
seen how to build it up out of component resistances.

Some practical problems encountered in the evaluation of overall
heat transfer coefficients have been discussed.

Three very important things have not been considered in Chapter 2:

In all evaluations of U that involve values of h, we have taken these
values as given information. In any real situation, we must deter-
mine correct values of h for the specific situation. Part III deals with
such determinations.

When fluids flow through heat exchangers, they give up or gain
energy. Thus, the driving temperature difference varies through
the exchanger. (Problem 2.14 asks you to consider this difficulty
in its simplest form.) Accordingly, the design of an exchanger is
complicated. We deal with this problem in Chapter 3.

The heat transfer coefficients themselves vary with position inside
many types of heat exchangers, causing U to be position-dependent.

Problems

2.1 Prove that if k varies linearly with T in a slab, and if heat trans-

fer is one-dimensional and steady, then g may be evaluated
precisely using k evaluated at the mean temperature in the
slab.
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2.2

2.3

2.4

2.5

2.6

Invent a numerical method for calculating the steady heat flux
through a plane wall when k(T) is an arbitrary function. Use
the method to predict g in an iron slab 1 cm thick if the tem-
perature varies from —100°C on the left to 400°C on the right.
How far would you have erred if you had taken Kkaverage =
(Kieft + Kright) /27

The steady heat flux at one side of a slab is a known value g,.
The thermal conductivity varies with temperature in the slab,
and the variation can be expressed with a power series as

i=n '
k= > AT
i=0

(a) Start with eqn. (2.10) and derive an equation that relates
T to position in the slab, x. (b) Calculate the heat flux at any
position in the wall from this expression using Fourier’s law.
Is the resulting g a function of x?

Combine Fick’s law with the principle of conservation of mass
(of the dilute species) in such a way as to eliminate j;, and
obtain a second-order differential equation in m ;. Discuss the
importance and the use of the result.

Solve for the temperature distribution in a thick-walled pipe
if the bulk interior temperature and the exterior air tempera-
ture, Tw,, and Tw,, are known. The interior and the exterior
heat transfer coefficients are h; and h,, respectively. Follow
the method in Example 2.6 and put your result in the dimen-
sionless form:

T - Tooi
Teo; — Too,

1

= fn (Bi;, Bio, v /7i, v /7i)

Put the boundary conditions from Problem 2.5 into dimension-
less form so that the Biot numbers appear in them. Let the Biot
numbers approach infinity. This should get you back to the
boundary conditions for Example 2.5. Therefore, the solution
that you obtain in Problem 2.5 should reduce to the solution of
Example 2.5 when the Biot numbers approach infinity. Show
that this is the case.
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Figure 2.22 Configuration for

Problem 2.8.

2.7

2.8

2.9

2.10

— h=20

m2°c

(Too=25"C)

Write an accurate explanation of the idea of critical radius of
insulation that your kid brother or sister, who is still in grade
school, could understand. (If you do not have an available kid,
borrow one to see if your explanation really works.)

The slab shown in Fig. 2.22 is embedded on five sides in insu-
lating materials. The sixth side is exposed to an ambient tem-
perature through a heat transfer coefficient. Heat is generated
in the slab at the rate of 1.0 kW/m3 The thermal conductivity
of the slab is 0.2 W/m-K. (a) Solve for the temperature distri-
bution in the slab, noting any assumptions you must make. Be
careful to clearly identify the boundary conditions. (b) Evalu-
ate T at the front and back faces of the slab. (c) Show that your
solution gives the expected heat fluxes at the back and front
faces.

Consider the composite wall shown in Fig. 2.23. The concrete
and brick sections are of equal thickness. Determine T, To,
q, and the percentage of g that flows through the brick. To
do this, approximate the heat flow as one-dimensional. Draw
the thermal circuit for the wall and identify all four resistances
before you begin.

Compute Q and U for Example 2.11 if the wall is 0.3 m thick.
Five (each) pine and sawdust layers are 5 and 8 cm thick, re-
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2.11

2.12

2.13

2.14

spectively; and the heat transfer coefficients are 10 on the left
and 18 on the right. Tw, = 30°C and T, = 10°C.

Compute U for the slab in Example 1.2.

Consider the tea kettle in Example 2.10. Suppose that the ket-
tle holds 1 kg of water (about 1 liter) and that the flame im-
pinges on 0.02 m? of the bottom. (a) Find out how fast the wa-
ter temperature is increasing when it reaches its boiling point,
and calculate the temperature of the bottom of the kettle im-
mediately below the water if the gases from the flame are at
500°C when they touch the bottom of the kettle. Assume that
the heat capacitance of the aluminum kettle is negligible. (b)
There is an old parlor trick in which one puts a paper cup of
water over an open flame and boils the water without burning
the paper (see Experiment 2.1). Explain this using an electrical
analogy. [(a): AT /dt = 0.37°C/s.]

Copper plates 2 mm and 3 mm in thickness are processed
rather lightly together. Non-oil-bearing steam condenses un-
der pressure at Ty = 200°C on one side (h = 12,000 W/m?2K)
and methanol boils under pressure at 130°Con the other (h =
9000 W/m?K). Estimate U and q initially and after extended
service. List the relevant thermal resistances in order of de-
creasing importance and suggest whether or not any of them
can be ignored.

0.5 kg/s of air at 20°C moves along a channel that is 1 m from
wall to wall. One wall of the channel is a heat exchange surface

j2,5 cmr‘ 7.5cm —»t-w S5cm ,-I
Concrete cinder
O Q
370°C °e block o 66°C
N £ o . £ |7
= k=0.76W/m- C £ =z
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M Building T 9
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w
o
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Figure 2.23 Configuration for
9 Problem 2.9.
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2.16

2.17

2.18

2.19

2.20

2.21

(U = 300 W/m?K) with steam condensing at 120°C on its back.
Determine (a) q at the entrance; (b) the rate of increase of tem-
perature of the fluid with x at the entrance; (c) the temperature
and heat flux 2 m downstream. [(c): Tom = 89.7°C.]

An isothermal sphere 3 cm in diameter is kept at 80°C in a
large clay region. The temperature of the clay far from the
sphere is kept at 10°C. How much heat must be supplied to
the sphere to maintain its temperature if kcjay = 1.28 W/m-K?
(Hint: You must solve the boundary value problem not in the
sphere but in the clay surrounding it.) [Q = 16.9 W.]

Is it possible to increase the heat transfer from a convectively
cooled isothermal sphere by adding insulation? Explain fully.

A wall consists of layers of metals and plastic with heat trans-
fer coefficients on either side. U is 255 W/m?K and the overall
temperature difference is 200°C. One layer in the wall is stain-
less steel (k = 18 W/m-K) 3 mm thick. What is AT across the
stainless steel?

A 1% carbon-steel sphere 20 cm in diameter is kept at 250°C on
the outside. It has an 8 cm diameter cavity containing boiling
water (Rinside 1S very high) which is vented to the atmosphere.
What is Q through the shell?

A slab is insulated on one side and exposed to a surround-
ing temperature, T, through a heat transfer coefficient on the
other. There is nonuniform heat generation in the slab such
that g =[A (W/m?*)][x (m)], where x = 0 at the insulated wall
and x = L at the cooled wall. Derive the temperature distribu-
tion in the slab.

800 W/m? of heat is generated within a 10 cm diameter nickel-
steel sphere for which k = 10 W/m-K. The environment is at
20°C and there is a natural convection heat transfer coefficient
of 10 W/m?2K around the outside of the sphere. What is its
center temperature at the steady state? [21.37°C.]

An outside pipe is insulated and we measure its temperature
with a thermocouple. The pipe serves as an electrical resis-
tance heater, and ¢ is known from resistance and current mea-
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2.22

2.23

2.24

2.25

2.26

surements. The inside of the pipe is cooled by the flow of lig-
uid with a known bulk temperature. Evaluate the heat transfer
coefficient, h, in terms of known information. The pipe dimen-
sions and properties are known. [Hint: Remember that h is not
known and we cannot use a boundary condition of the third
kind at the inner wall to get T(7).]

Consider the hot water heater in Problem 1.11. Suppose that it
is insulated with 2 cm of a material for which k = 0.12 W/m-K,
and suppose that h = 16 W/m?2K. Find (a) the time constant
T for the tank, neglecting the casing and insulation; (b) the
initial rate of cooling in °C/h; (c) the time required for the water
to cool from its initial temperature of 75°C to 40°C; (d) the
percentage of additional heat loss that would result if an outer
casing for the insulation were held on by eight steel rods, 1 cm
in diameter, between the inner and outer casings.

A slab of thickness L is subjected to a constant heat flux, g1, on
the left side. The right-hand side if cooled convectively by an
environment at T. (a) Develop a dimensionless equation for
the temperature of the slab. (b) Present dimensionless equa-
tion for the left- and right-hand wall temperatures as well. (c)
If the wall is firebrick, 10 cm thick, g1 is 400 W/m?, h = 20
W/m?K, and T. = 20°C, compute the lefthand and righthand
temperatures.

Heat flows steadily through a stainless steel wall of thickness
Lgs =0.06 m, with a variable thermal conductivity of kgs=1.67 +
0.0143 T(°C). Itis partially insulated on the right side with glass
wool of thickness Lgw = 0.1 m, with a thermal conductivity
of kgw = 0.04. The temperature on the left-hand side of the
stainless stell is 400°Cand on the right-hand side if the glass
wool is 100°C. Evaluate g and T;.

Rework Problem 1.29 with a heat transfer coefficient, h, = 40
W/m?2K on the outside (i.e., on the cold side).

A scientist proposes an experiment for the space shuttle in
which he provides underwater illumination in a large tank of
water at 20°C, using a 3 cm diameter spherical light bulb. What
is the maximum wattage of the bulb in zero gravity that will
not boil the water?
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2.28

2.29

2.30

2.31

A cylindrical shell is made of two layers- an inner one with
inner radius = r; and outer radius = 7. and an outer one with
inner radius = 7. and outer radius = r,. There is a contact
resistance, h., between the shells. The materials are different,
and Th (v =v;) = Tjand To (v = 7v,) = T,. Derive an expression
for the inner temperature of the outer shell (T3,).

A 1 kW commercial electric heating rod, 8 mm in diameter and
0.3 m long, is to be used in a highly corrosive gaseous environ-
ment. Therefore, it has to be provided with a cylindrical sheath
of fireclay. The gas flows by at 120°C, and h is 230 W/m?K out-
side the sheath. The surface of the heating rod cannot exceed
800°C. Set the maximum sheath thickness and the outer tem-
perature of the fireclay. [Hint: use heat flux and temperature
boundary conditions to get the temperature distribution. Then
use the additional convective boundary condition to obtain the
sheath thickness.]

A very small diameter, electrically insulated heating wire runs
down the center of a 7.5 mm diameter rod of type 304 stain-
less steel. The outside is cooled by natural convection (h = 6.7
W/m?K) in room air at 22°C. If the wire releases 12 W/m, plot
Troq VS. radial position in the rod and give the outside temper-
ature of the rod. (Stop and consider carefully the boundary
conditions for this problem.)

A contact resistance experiment involves pressing two slabs of
different materials together, putting a known heat flux through
them, and measuring the outside temperatures of each slab.
Write the general expression for h. in terms of known quanti-
ties. Then calculate h. if the slabs are 2 cm thick copper and
1.5 cm thick aluminum, if g is 30,000 W/m?, and if the two
temperatures are 15°C and 22.1°C.

A student working heat transfer problems late at night needs
a cup of hot cocoa to stay awake. She puts milk in a pan on an
electric stove and seeks to heat it as rapidly as she can, without
burning the milk, by turning the stove on high and stirring the
milk continuously. Explain how this works using an analogous
electric circuit. Is it possible to bring the entire bulk of the milk
up to the burn temperature without burning part of it?
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2.32

2.33

2.34

2.35

2.36

2.37

2.38

A small, spherical hot air balloon, 10 m in diameter, weighs
130 kg with a small gondola and one passenger. How much
fuel must be consumed (in kJ/h) if it is to hover at low altitude
in still 27°C air? (Moutside = 215 W/m?K, as the result of natural
convection.)

A slab of mild steel, 4 cm thick, is held at 1,000°C on the back
side. The front side is approximately black and radiates to
black surroundings at 100°C. What is the temperature of the
front side?

With reference to Fig. 2.3, develop an empirical equation for
k(T) for ammonia vapor. Then imagine a hot surface at Ty,
parallel with a cool horizontal surface at a distance H below it.
Develop equations for T(x) and q. Compute g if T,, = 350°C,
Tcool = —5°C, and H = 0.15 m.

A type 316 stainless steel pipe has a 6 cm inside diameter and
an 8 cm outside diameter with a 2 mm layer of 85% magnesia
insulation around it. Liquid at 112°C flows inside, so h; = 346
W/m?2K. The air around the pipe is at 20°C, and ho = 6 W/m?K.
Calculate U based on the inside area. Sketch the equivalent
electrical circuit, showing all known temperatures. Discuss
the results.

Two highly reflecting, horizontal plates are spaced 0.0005 m
apart. The upper one is kept at 1000°C and the lower one at
200°C. There is air in between. Neglect radiation and compute
the heat flux and the midpoint temperature in the air. Use a
power-law fit of the form k = a(T°C)P to represent the air data
in Table A.6.

A 0.1 m thick slab with k = 3.4 W/m-K is held at 100°C on the
left side. The right side is cooled with air at 20°C through a
heat transfer coefficient, and h = (5.1 W/m?2(K)~5/%) (Twan —
T-)'/4. Find q and Twan on the right.

Heat is generated at 54,000 W/m3 in a 0.16 m diameter sphere.
The sphere is cooled by natural convection with fluid at 0°C,
and h = [2 + 6(Tsurface — Too) /41 W/m?K, ksphere = 9 W/m-K.
Find the surface temperature and center temperature of the
sphere.
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2.40

241

2.42

Layers of equal thickness of spruce and pitch pine are lami-
nated to make an insulating material. How should the lamina-
tions be oriented in a temperature gradient to achieve the best
effect?

The resistances of a thick cylindrical layer of insulation must
be increased. Will Q be lowered more by a small increase of
the outside diameter or by the same decrease in the inside
diameter?

You are in charge of energy conservation at your plant. There
is a 300 m run of 6 in. O.D. pipe carrying steam at 250°C. The
company requires that any insulation must pay for itself in
one year. The thermal resistances are such that the surface of
the pipe will stay close to 250°C in air at 25°C when h = 10
W/m?2K. Calculate the annual energy savings in kW-h that will
result if a 1 in layer of 85% magnesia insulation is added. If
energy is worth 6 cents per kW-h and insulation costs $75 per
installed linear meter, will the insulation pay for itself in one
year?

An exterior wall of a wood-frame house is typically composed,
from outside to inside, of a layer of wooden siding, a layer
glass fiber insulation, and a layer of gypsum wall board. Stan-
dard glass fiber insulation has a thickness of 3.5 inch and a
conductivity of 0.038 W/m-K. Gypsum wall board is normally
0.50 inch thick with a conductivity of 0.17 W/m-K, and the sid-
ing can be assumed to be 1.0 inch thick with a conductivity of
0.10 W/m-K.

a. Find the overall thermal resistance of such a wall (in K/W)
if it has an area of 400 ft2.

b. Convection and radiation processes on the inside and out-
side of the wall introduce more thermal resistance. As-
suming that the effective outside heat transfer coefficient
(accounting for both convection and radiation) is h, = 20
W/m?K and that for the inside is h; = 10 W/m?2K, deter-
mine the total thermal resistance for heat loss from the
indoors to the outdoors. Also obtain an overall heat trans-
fer coefficient, U, in W/m?2K.
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c. If the interior temperature is 20°C and the outdoor tem-
perature is —5°C, find the heat loss through the wall in
watts and the heat flux in W/m?.

d. Which of the five thermal resistances is dominant?

We found that the thermal resistance of a cylinder was Ry, =
(1/21kl) In(v, /7). If v, = 7; + 6, show that the thermal resis-
tance of a thin-walled cylinder (6 < ;) can be approximated
by that for a slab of thickness 6. Thus, Ry, = 6/(kA;), where
A; = 271l is the inside surface area of the cylinder. How
much error is introduced by this approximation if 6/7; = 0.2?
[Hint: Use a Taylor series.]

A Gardon gage measures a radiation heat flux by detecting a
temperature difference [2.10]. The gage consists of a circular
constantan membrane of radius R, thickness t, and thermal
conductivity k¢ which is joined to a heavy copper heat sink
at its edges. When a radiant heat flux gyaq is absorbed by the
membrane, heat flows from the interior of the membrane to
the copper heat sink at the edge, creating a radial tempera-
ture gradient. Copper leads are welded to the center of the
membrane and to the copper heat sink, making two copper-
constantan thermocouple junctions. These junctions measure
the temperature difference AT between the center of the mem-
brane, T (r = 0), and the edge of the membrane, T (v = R).

The following approximations can be made:
. The membrane surface has been blackened so that it ab-
sorbs all radiation that falls on it

o The radiant heat flux is much larger than the heat lost
from the membrane by convection or re-radiation. Thus,
all absorbed radiant heat is removed from the membrane
by conduction to the copper heat sink, and other loses
can be ignored

o The gage operates in steady state
. The membrane is thin enough (t <« R) that the tempera-
ture in it varies only with 7, i.e., T = T(r) only.

Answer the following questions.
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a. For afixed copper heat sink temperature, T (¥ = R), sketch
the shape of the temperature distribution in the mem-
brane, T(r), for two arbitrary heat radiant fluxes grad;
and grad2, where grad; > qrado-

b. Find the relationship between the radiant heat flux, graq,
and the temperature difference obtained from the ther-
mocouples, AT. HINT: Treat the absorbed radiant heat
flux as if it were a volumetric heat source of magnitude
drad/t (W/m3).

You have a 12 oz. (375 mL) can of soda at room temperature
(70°F) that you would like to cool to 45°F before drinking. You
rest the can on its side on the plastic rods of the refrigerator
shelf. The can is 2.5 inches in diameter and 5 inches long.
The can’s emissivity is € = 0.4 and the natural convection heat
transfer coefficient around it is a function of the temperature
difference between the can and the air: h = 2 AT!/# for AT in
kelvin.

Assume that thermal interactions with the refrigerator shelf

are negligible and that buoyancy currents inside the can will
keep the soda well mixed.

a. Estimate how long it will take to cool the can in the refrig-
erator compartment, which is at 40°F.

b. Estimate how long it will take to cool the can in the freezer
compartment, which is at 5°F.

c. Are your answers for parts 1 and 2 the same? If not, what
is the main reason that they are different?
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3. Heat exchanger design

The great object to be effected in the boilers of these engines is, to keep
a small quantity of water at an excessive temperature, by means of a
small amount of fuel kept in the most active state of combustion...No
contrivance can be less adapted for the attainment of this end than one or
two large tubes traversing the boiler, as in the earliest locomotive engines.
The Steam Engine Familiarly Explained and Illustrated,

Dionysus Lardner, 1836

3.1 Function and configuration of heat exchangers

The archetypical problem that any heat exchanger solves is that of get-
ting energy from one fluid mass to another, as we see in Fig. 3.1. A simple
or composite wall of some kind divides the two flows and provides an
element of thermal resistance between them. There is an exception to
this configuration in the direct-contact form of heat exchanger. Figure
3.2 shows one such arrangement in which steam is bubbled into water.
The steam condenses and the water is heated at the same time. In other
arrangements, immiscible fluids might contact each other or nonconden-
sible gases might be bubbled through liquids.

This discussion will be restricted to heat exchangers with a dividing
wall between the two fluids. There is an enormous variety of such config-
urations, but most commercial exchangers reduce to one of three basic
types. Figure 3.3 shows these types in schematic form. They are:

e The simple parallel or counterflow configuration. These arrange-
ments are versatile. Figure 3.4 shows how the counterflow arrange-
ment is bent around in a so-called Heliflow compact heat exchanger
configuration.

e The shell-and-tube configuration. Figure 3.5 shows the U-tubes of
a two-tube-pass, one-shell-pass exchanger being installed in the
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Figure 3.1 Heat exchange.

supporting baffles. The shell is yet to be added. Most of the re-
ally large heat exchangers are of the shell-and-tube form.

e The cross-flow configuration. Figure 3.6 shows typical cross-flow
units. In Fig. 3.6a and c, both flows are unmixed. Each flow must
stay in a prescribed path through the exchanger and is not allowed
to “mix” to the right or left. Figure 3.6b shows a typical plate-fin
cross-flow element. Here the flows are also unmixed.

Figure 3.7, taken from the standards of the Tubular Exchanger Manu-
facturer’s Association (TEMA) [3.1], shows four typical single-shell-pass
heat exchangers and establishes nomenclature for such units.

These pictures also show some of the complications that arise in
translating simple concepts into hardware. Figure 3.7 shows an exchan-
ger with a single tube pass. Although the shell flow is baffled so that it
crisscrosses the tubes, it still proceeds from the hot to cold (or cold to
hot) end of the shell. Therefore, it is like a simple parallel (or counter-
flow) unit. The kettle reboiler in Fig. 3.7d involves a divided shell-pass
flow configuration over two tube passes (from left to right and back to the
“channel header”). In this case, the isothermal shell flow could be flowing
in any direction—it makes no difference to the tube flow. Therefore, this
exchanger is also equivalent to either the simple parallel or counterflow
configuration.
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Figure 3.2 A direct-contact heat exchanger.

Notice that a salient feature of shell-and-tube exchangers is the pres-
ence of baffles. Baffles serve to direct the flow normal to the tubes. We
find in Part III that heat transfer from a tube to a flowing fluid is usually
better when the flow moves across the tube than when the flow moves
along the tube. This augmentation of heat transfer gives the complicated
shell-and-tube exchanger an advantage over the simpler single-pass par-
allel and counterflow exchangers.

However, baffles bring with them a variety of problems. The flow pat-
terns are very complicated and almost defy analysis. A good deal of the
shell-side fluid might unpredictably leak through the baffle holes in the
axial direction, or it might bypass the baffles near the wall. In certain
shell-flow configurations, unanticipated vibrational modes of the tubes
might be excited. Many of the cross-flow configurations also baffle the
fluid so as to move it across a tube bundle. The plate-and-fin configura-
tion (Fig. 3.6b) is such a cross-flow heat exchanger.

In all of these heat exchanger arrangements, it becomes clear that a
dramatic investment of human ingenuity is directed towards the task of
augmenting the heat transfer from one flow to another. The variations
are endless, as you will quickly see if you try Experiment 3.1.

Experiment 3.1

Carry a notebook with you for a day and mark down every heat ex-
changer you encounter in home, university, or automobile. Classify each
according to type and note any special augmentation features.

The analysis of heat exchangers first becomes complicated when we
account for the fact that two flow streams change one another’s temper-
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Figure 3.4 Heliflow compact counterflow heat exchanger.
(Photograph coutesy of Graham Manufacturing Co., Inc.,
Batavia, New York.)

ature. It is to the problem of predicting an appropriate mean tempera-
ture difference that we address ourselves in Section 3.2. Section 3.3 then
presents a strategy to use when this mean cannot be determined initially.

3.2 Evaluation of the mean temperature difference
in a heat exchanger

Logarithmic mean temperature difference (LMTD)

To begin with, we take U to be a constant value. This is fairly reasonable
in compact single-phase heat exchangers. In larger exchangers, particu-
larly in shell-and-tube configurations and large condensers, U is apt to
vary with position in the exchanger and/or with local temperature. But
in situations in which U is fairly constant, we can deal with the varying
temperatures of the fluid streams by writing the overall heat transfer in
terms of a mean temperature difference between the two fluid streams:

Q = UAATmean (31)
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Above and left: A very large feed-water preheater. Tubes
are shown withdrawn from the shell on the left. Inset
above shows baffles before tubes are inserted. (Photos
courtesy of Southwest Engineering Co., Subsidiary of
Cronus Industries, Inc., Los Angeles, Calif.)

Below: Small ““Swinglok' exchanger with tube-bundle
removed from shell. (Photo courtesy of Graham
Manufacturing Co. Inc., Batavia, New York.)

Figure 3.5 Typical commercial one-shell-pass, two-tube-pass
heat exchangers.

104



a. A 1980 Chevette radiator. Cross-flow exchan-
ger with neither flow mixed. Edges of flat verti-
cal tubes can be seen.

c. The basic 1 ft. x 1 ft.x 2 ft. mod-
ule for a waste heat recuperator. It is
a plate-fin, gas-to-air cross-flow heat
exchanger with neither flow mixed.

b. A section of an automotive air condition-
ing condenser. The flow through the hori-
zontal wavy fins is allowed to mix with itself
while the two-pass flow through the U-tubes
remains unmixed.

Figure 3.6 Several commercial cross-flow heat exchangers.
(Photographs courtesy of Harrison Radiator Division, General
Motors Corporation.)
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Figure 3.7 Four typical heat exchanger configurations (contin-
ued on next page). (Drawings courtesy of the Tubular Exchan-
ger Manufacturers’ Association.)
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d) One split shell-pass, two tube-pass, kettle type of exchanger

Figure 3.7 Continued

Our problem then reduces to finding the appropriate mean temperature
difference that will make this equation true. Let us do this for the simple
parallel and counterflow configurations, as sketched in Fig. 3.8.

The temperature of both streams is plotted in Fig. 3.8 for both single-
pass arrangements—the parallel and counterflow configurations—as a
function of the length of travel (or area passed over). Notice that, in the
parallel-flow configuration, temperatures tend to change more rapidly
with position and less length is required. But the counterflow arrange-
ment achieves generally more complete heat exchange from one flow to
the other.

Figure 3.9 shows another variation on the single-pass configuration.
This is a condenser in which one stream flows through with its tempera-
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Figure 3.8 The temperature variation through single-pass
heat exchangers.

ture changing, but the other simply condenses at uniform temperature.
This arrangement has some special characteristics, which we point out
shortly.

The determination of ATmean for such arrangements proceeds as fol-
lows: the differential heat transfer within either arrangement (see Fig. 3.8)
is

dQ = UAT dA = —(mcp)p dTy = =(1rcy)c dTe (3.2)
where the subscripts h and ¢ denote the hot and cold streams, respec-
tively; the upper and lower signs are for the parallel and counterflow
cases, respectively; and dT denotes a change from left to right in the

exchanger. We give symbols to the total heat capacities of the hot and
cold streams:

Thus, for either heat exchanger, +C;dT; = C.dT.. This equation can
be integrated from the lefthand side, where T}, = Ty, and T, = T, for
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Figure 3.9 The temperature distribution through a condenser.

parallel flow or Ty, = Ty,, and T, = T, for counterflow, to some arbitrary
point inside the exchanger. The temperatures inside are thus:

parallel flow: Ty = Ty, — Ce (Te = Teyy) = Thy, — o

Cn Ch

C Q (3.4)
counterflow: Ty = Th, — =< (Tege = Te) = Thy, — ~

Cn Chn

where Q is the total heat transfer from the entrance to the point of inter-
est. Equations (3.4) can be solved for the local temperature differences:

ATyaraltel = T — Te = Ty, — (1 n g—) .+ S,
h h

C C
ATeounter = Th — Te = Tpy, — (1 - Ch) R

(3.5)
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Substitution of these in dQ = C.dT, = UAT dA yields

UdA B aT,
Ce parallel [_ (1 + &) T. + &an + Thin]
Cn Cn (3.6)
UdA B aT, '
Ce counter_ [_ (1_&)7" —QT + T ]
Ch c Ch Cout Rin
Equations (3.6) can be integrated across the exchanger:
A T,
U cout ch
—dA = 3.7
I B 57
If U and C, can be treated as constant, this integration gives
[ &) Ce
— (1 + Ch TCOut + Ch Tcin + Thin U A CC
parallel: In C C = 1+ o
— 1+—C>T.+—CT.+T. ¢ h
i ( Ch Cin Ch Cin hin
(1-S) g, - &
- (1 - Ch Teon Ch Teow + Thyy UA C,
counter: In C C = 1- C,
[ i) T. —=°T +T c h
| ( Ch Cin Ch Cout Rin
(3.8)

If U were variable, the integration leading from eqgn. (3.7) to eqns. (3.8)
is where its variability would have to be considered. Any such variability
of U can complicate eqns. (3.8) terribly. Presuming that eqns. (3.8) are
valid, we can simplify them with the help of the definitions of AT, and
ATy, given in Fig. 3.8:

(1+ Cc/Cp)(Tgy, — Tt )+ATb] (1 1 )
llel: 1 in out - A=+ —
paralle n[ AT, U C + C
AT, < 1 1 )
counter: In =-UA|—=—-—
(=1 + Cc/Cp)(Tey, — Tepy) + ATq Cc Cp
(3.9)
Conservation of energy (Q. = Qy) requires that
T — Ty,
g __ ‘hout hin (3.10)

C”l - Tcout - TCin
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Then eqgn. (3.9) and eqn. (3.10) give

AT, ATy
parallel: In (Tein = Teow) + (Thoy = Thyy) +AT)
ATy,
AT, 11
n(3) (e e)

ATy, C. Gy

AT, AT 1 1

counter n ATy — ATa + ATy "\ AT, v Cc Cp
(3.11)

Finally, we write 1/Cc = (T¢oy — T¢yn)/Q and 1/Cp = (T, — Thy,,)/Q on
the right-hand side of either of eqns. (3.11) and get for either parallel or
counterflow,

AT, — AT, )

In(AT,/ATy) (3.12)

0 -ua(

The appropriate ATyean for use in eqn. (3.11) is thus the logarithmic mean
temperature difference (LMTD):

AT, — AT,

ATmean =LMTD = 11’1<Ma>
AT,

(3.13)

Example 3.1

The idea of a logarithmic mean difference is not new to us. We have
already encountered it in Chapter 2. Suppose that we had asked,
“What mean radius of pipe would have allowed us to compute the
conduction through the wall of a pipe as though it were a slab of
thickness L = v, — 7;?” (see Fig. 3.10). To answer this, we compare

_ AT Vmean )
Q= kA—L = 2TkIAT <To o
with egn. (2.21):

1

=2mMkIAT ———
Q In(ro/77)
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Cross-section of a The equivalent slab
cylinder

Figure 3.10 Calculation of the mean radius for heat conduc-
tion through a pipe.

It follows that
To - Tl _

—————— = ]ogarithmic mean radius |
In(vo /7¢) &

Vmean =

Example 3.2

Suppose that the temperature difference on either end of a heat ex-
changer, AT,, and ATy, are equal. Clearly, the effective AT must equal
AT, and ATy, in this case. Does the LMTD reduce to this value?

SOLUTION. If we substitute AT; = ATy, in eqn. (3.13), we get

ATy, — AT,
b b _0_ indeterminate

IMID= ————— =
In(AT,/AT,) O

Therefore it is necessary to use L'Hospital’s rule:

0
— (AT, — AT, )'
e ATa= ATy _ 9AT, a P AT =aT,
AT,—AT, In(AT,/ATy) 0 ! <ATa>
n

AT, \ATy)| 7, _ap,

= <#> = AT, = AT,
1/AT‘1 ATa=ATy ¢ !
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It follows that the LMTD reduces to the intuitively obvious result in
the limit. |

Example 3.3

Water enters the tubes of a small single-pass heat exchanger at 20°C
and leaves at 40°C. On the shell side, 25 kg/min of steam condenses at
60°C. Calculate the overall heat transfer coefficient and the required
flow rate of water if the area of the exchanger is 12 m?. (The latent
heat, hy,, is 2358.7 kJ/kg at 60°C.)

SOLUTION.

_ 25(2358.7)

Q = Mcondensate * hfg 60°Cc - 60 =983 kJ/s

and with reference to Fig. 3.9, we can calculate the LMTD without
naming the exchanger “parallel” or “counterflow”, since the conden-
sate temperature is constant.

(60 —20) — (60 — 40)

LMTD = - (60 — 20) =28.85K
60 — 40
Then
3 Q
U= A(LMTD)
~983(1000) 5
= 12(28.85) - 2839 W/m“K
and
My,0 = Q__ 983,000 _ 11.78 kg/s [ ]

cpAT — 4174(20)

Extended use of the LMTD

Limitations. There are two basic limitations on the use of an LMTD.
The first is that it is restricted to the single-pass parallel and counter-
flow configurations. This restriction can be overcome by adjusting the
LMTD for other configurations—a matter that we take up in the following
subsection.
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Figure 3.11 A typical case of a heat exchanger in which U
varies dramatically.

The second limitation—our use of a constant value of U— is more
serious. The value of U must be negligibly dependent on T to complete
the integration of eqn. (3.7). Even if U + fn(T), the changing flow con-
figuration and the variation of temperature can still give rise to serious
variations of U within a given heat exchanger. Figure 3.11 shows a typ-
ical situation in which the variation of U within a heat exchanger might
be great. In this case, the mechanism of heat exchange on the water side
is completely altered when the liquid is finally boiled away. If U were
uniform in each portion of the heat exchanger, then we could treat it as
two different exchangers in series.

However, the more common difficulty that we face is that of design-
ing heat exchangers in which U varies continuously with position within
it. This problem is most severe in large industrial shell-and-tube config-
urations! (see, e.g., Fig. 3.5 or Fig. 3.12) and less serious in compact heat
exchangers with less surface area. If U depends on the location, analyses
such as we have just completed [eqn. (3.1) to egn. (3.13)] must be done
using an average U defined as f{;‘ UdA/A.

I Ac